dc.creatorde Queiroz, TA
dc.creatorMiyazawa, FK
dc.date2013
dc.dateOCT
dc.date2014-08-01T18:18:01Z
dc.date2015-11-26T17:03:18Z
dc.date2014-08-01T18:18:01Z
dc.date2015-11-26T17:03:18Z
dc.date.accessioned2018-03-28T23:51:26Z
dc.date.available2018-03-28T23:51:26Z
dc.identifierInternational Journal Of Production Economics. Elsevier Science Bv, v. 145, n. 2, n. 511, n. 530, 2013.
dc.identifier0925-5273
dc.identifier1873-7579
dc.identifierWOS:000324844300007
dc.identifier10.1016/j.ijpe.2013.04.032
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76830
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76830
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1279040
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn the oriented Two-Dimensional Strip Packing Problem (2SP), one has to pack a set of rectangular items into a rectangular strip and minimizes the overall strip height used to pack all items. This paper deals with the 2SP under two practical situations. In the first, feasible packings must respect the load balancing and the multi-drop constraints. That is, the center of gravity of the packing at each moment must lie in a safety region, even after a subset of items is unloaded. In the second situation, the load balancing constraint is combined with the load bearing constraint. In a packing that respect the load bearing constraint, the bearing capacity of each item must be respected. That is, there is a maximum tolerable weight that each item can bear. For both situations, we present approximate 0-1 integer linear programming models and heuristics, based on level-packing algorithms and packing on corner points. The level-packing heuristic has an asymptotic approximation ratio bounded by 1.75, when the number of orders is bounded by a constant. The heuristics have proven to be helpful when combined with the integer models. In addition, many computational experiments validate the integer models and show that they are suitable to deal with problems where the number of possible positions to arrange the items in the bin is small. (C) 2013 Elsevier B.V. All rights reserved.
dc.description145
dc.description2
dc.description511
dc.description530
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAPEG
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationInternational Journal Of Production Economics
dc.relationInt. J. Prod. Econ.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectTwo-dimensional strip packing problem
dc.subjectInteger programming
dc.subjectLoad balancing constraints
dc.subjectMulti-drop requirements
dc.subjectLoad bearing constraints
dc.subjectSearch Algorithm
dc.titleTwo-dimensional strip packing problem with load balancing, load bearing and multi-drop constraints
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución