dc.creatorZevallos, M
dc.creatorHotta, LK
dc.date2012
dc.date2014-08-01T18:32:43Z
dc.date2015-11-26T17:03:07Z
dc.date2014-08-01T18:32:43Z
dc.date2015-11-26T17:03:07Z
dc.date.accessioned2018-03-28T23:51:14Z
dc.date.available2018-03-28T23:51:14Z
dc.identifierJournal Of Statistical Computation And Simulation. Taylor & Francis Ltd, v. 82, n. 11, n. 1571, n. 1589, 2012.
dc.identifier0094-9655
dc.identifierWOS:000310309700002
dc.identifier10.1080/00949655.2011.583651
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/80497
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/80497
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1279007
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis paper examines local influence assessment in generalized autoregressive conditional heteroscesdasticity models with Gaussian and Student-t errors, where influence is examined via the likelihood displacement. The analysis of local influence is discussed under three perturbation schemes: data perturbation, innovative model perturbation and additive model perturbation. For each case, expressions for slope and curvature diagnostics are derived. Monte Carlo experiments are presented to determine the threshold values for locating influential observations. The empirical study of daily returns of the New York Stock Exchange composite index shows that local influence analysis is a useful technique for detecting influential observations; most of the observations detected as influential are associated with historical shocks in the market. Finally, based on this empirical study and the analysis of simulated data, some advice is given on how to use the discussed methodology.
dc.description82
dc.description11
dc.description1571
dc.description1589
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionLaboratorio EPIFISMA
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherTaylor & Francis Ltd
dc.publisherAbingdon
dc.publisherInglaterra
dc.relationJournal Of Statistical Computation And Simulation
dc.relationJ. Stat. Comput. Simul.
dc.rightsfechado
dc.rightshttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dc.sourceWeb of Science
dc.subjectlocal influence
dc.subjectvolatility
dc.subjectsensitivity
dc.subjectstudent-t
dc.subjectNYSE
dc.subjectLocal Influence
dc.subjectInfluence Diagnostics
dc.subjectRegression-models
dc.titleInfluential observations in GARCH models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución