dc.creatordos Reis, A
dc.creatorAlbuquerque, EL
dc.creatorPalermo, L
dc.date2013
dc.dateAPR
dc.date2014-08-01T18:24:16Z
dc.date2015-11-26T17:03:06Z
dc.date2014-08-01T18:24:16Z
dc.date2015-11-26T17:03:06Z
dc.date.accessioned2018-03-28T23:51:12Z
dc.date.available2018-03-28T23:51:12Z
dc.identifierEngineering Analysis With Boundary Elements. Elsevier Sci Ltd, v. 37, n. 4, n. 738, n. 746, 2013.
dc.identifier0955-7997
dc.identifierWOS:000317450000010
dc.identifier10.1016/j.enganabound.2012.11.009
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78434
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78434
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1278999
dc.descriptionThis work presents a formulation for thick plates following Mindlin theory. The fundamental solution takes into account an assumed displacement distribution on the thickness, and was derived by means of Hormander operator and the Radon transform. To compute the inverse Radon transform of the fundamental solution, some numerical integrals need to be computed. How these integrations are carried out is a key point in the performance of the boundary element code. Two approaches to integrate fundamental solutions are discussed. Integral equations are obtained using Betti's reciprocal theorem. Domain integrals are exactly transformed into boundary integrals by the radial integration technique. (c) 2012 Elsevier Ltd. All rights reserved.
dc.description37
dc.description4
dc.description738
dc.description746
dc.languageen
dc.publisherElsevier Sci Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationEngineering Analysis With Boundary Elements
dc.relationEng. Anal. Bound. Elem.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectMindlin theory
dc.subjectThick plates
dc.subjectRadon transform
dc.subjectOrthotropic plates
dc.subjectTelles transformation
dc.subjectRadial Integration Method
dc.subjectGalerkin Mlpg Method
dc.subjectAnisotropic Plates
dc.subjectBending Problems
dc.subjectMindlin Plates
dc.subjectReissner Plate
dc.subjectThick Plates
dc.subjectDomain Integrals
dc.subjectDynamic-analysis
dc.subjectFinite-element
dc.titleThe boundary element method applied to orthotropic shear deformable plates
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución