dc.creator | STANGENHAUS, G | |
dc.creator | NARULA, SC | |
dc.creator | FERREIRA, P | |
dc.date | 1993 | |
dc.date | 2014-08-01T18:23:35Z | |
dc.date | 2015-11-26T17:01:08Z | |
dc.date | 2014-08-01T18:23:35Z | |
dc.date | 2015-11-26T17:01:08Z | |
dc.date.accessioned | 2018-03-28T23:48:58Z | |
dc.date.available | 2018-03-28T23:48:58Z | |
dc.identifier | Journal Of Statistical Computation And Simulation. Gordon Breach Sci Publ Ltd, v. 48, n. 41732, n. 127, n. 133, 1993. | |
dc.identifier | 0094-9655 | |
dc.identifier | WOS:A1993QM98400001 | |
dc.identifier | 10.1080/00949659308811546 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78205 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/78205 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1278649 | |
dc.description | At present very little is known about inference procedures on the parameters of the minimum sum of absolute errors, MSAE, regression model for small to medium size samples. We propose the use of bootstrap methods for this purpose. The (1 - alpha) confidence intervals on the parameters of the regression model may be constructed by using the bootstrap standard deviation or the bootstrap sampling distribution of the MSAE estimator. We compare and contrast the performance and quality of the intervals obtained by the two methods via a Monte Carlo study. | |
dc.description | 48 | |
dc.description | 41732 | |
dc.description | 127 | |
dc.description | 133 | |
dc.language | en | |
dc.publisher | Gordon Breach Sci Publ Ltd | |
dc.publisher | Reading | |
dc.publisher | Inglaterra | |
dc.relation | Journal Of Statistical Computation And Simulation | |
dc.relation | J. Stat. Comput. Simul. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | INFERENCE PROCEDURES | |
dc.subject | HYPOTHESIS TESTING | |
dc.subject | L(1)-NORM | |
dc.subject | MONTE CARLO | |
dc.subject | PERCENTILE METHOD | |
dc.subject | Inference Procedures | |
dc.title | BOOTSTRAP CONFIDENCE-INTERVALS FOR THE MINIMUM SUM OF ABSOLUTE ERRORS REGRESSION | |
dc.type | Artículos de revistas | |