dc.creatorCamargo, RD
dc.creatorChiacchio, AO
dc.creatorde Oliveira, EC
dc.date2013
dc.date38777
dc.date2014-08-01T18:38:19Z
dc.date2015-11-26T16:59:58Z
dc.date2014-08-01T18:38:19Z
dc.date2015-11-26T16:59:58Z
dc.date.accessioned2018-03-28T23:47:43Z
dc.date.available2018-03-28T23:47:43Z
dc.identifierBoundary Value Problems. Springer International Publishing Ag, 2013.
dc.identifier1687-2770
dc.identifierWOS:000325705400001
dc.identifier10.1186/1687-2770-2013-45
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81759
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81759
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1278349
dc.descriptionWe discuss the one-sided Green's function, associated with an initial value problem and the two-sided Green's function related to a boundary value problem. We present a specific calculation associated with a differential equation with constant coefficients. For both problems, we also present the Laplace integral transform as another methodology to calculate these Green's functions and conclude which is the most convenient one. An incursion in the so-called fractional Green's function is also presented. As an example, we discuss the isotropic harmonic oscillator.
dc.languageen
dc.publisherSpringer International Publishing Ag
dc.publisherCham
dc.publisherSuíça
dc.relationBoundary Value Problems
dc.relationBound. Value Probl.
dc.rightsaberto
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectMittag-leffler Functions
dc.subjectFractional Oscillator
dc.titleOne-sided and two-sided Green's functions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución