Artículos de revistas
Time-series clustering via quasi U-statistics
Registro en:
Journal Of Time Series Analysis. Wiley-blackwell, v. 33, n. 4, n. 608, n. 619, 2012.
0143-9782
WOS:000305243800006
10.1111/j.1467-9892.2012.00793.x
Autor
Valk, M
Pinheiro, A
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) The problem of time-series discrimination and classification is discussed. We propose a novel clustering algorithm based on a class of quasi U-statistics and subgroup decomposition tests. The decomposition may be applied to any concave time-series distance. The resulting test statistics are proven to be asymptotically normal for either i.i.d. or non-identically distributed groups of time-series under mild conditions. We illustrate its empirical performance on a simulation study and a real data analysis. The simulation setup includes stationary vs. stationary and stationary vs. non-stationary cases. The performance of the proposed method is favourably compared with some of the most common clustering measures available. 33 4 608 619 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAPESP [2007/02767-6, 2008/51097-6, 2009/14176-8] CNPq [306993/2008-2, 480919/2009-7]