dc.creatorIsmail, KAR
dc.creatorSalinas, CT
dc.creatorHenriquez, JR
dc.date2009
dc.dateJUL
dc.date2014-11-18T19:18:28Z
dc.date2015-11-26T16:58:06Z
dc.date2014-11-18T19:18:28Z
dc.date2015-11-26T16:58:06Z
dc.date.accessioned2018-03-28T23:45:43Z
dc.date.available2018-03-28T23:45:43Z
dc.identifierEnergy Conversion And Management. Pergamon-elsevier Science Ltd, v. 50, n. 7, n. 1691, n. 1703, 2009.
dc.identifier0196-8904
dc.identifierWOS:000266902900008
dc.identifier10.1016/j.enconman.2009.03.026
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52946
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/52946
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/52946
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1277846
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe use of absorbing gases filling the gap between glass sheets appears to be an alternative solution for thermally insulated glass windows. Fluid flow in the gap between the glass sheets either forced or natural offers other options for thermally efficient windows. In this work, the thermal efficiencies of glass windows filled with an absorbing gas exposed to solar radiation in hot climate is compared with both a simple glass window and a double glass window naturally ventilated. The two-dimensional transient energy equations with radiation absorption in the internal domain are used to model the simple glass window. The cumulative wavenumber model (CW) for real gas modeling together the discrete ordinates method is used to model double glass window filled with infrared absorbing gases. The numerical simulations were realized with three mixtures of gases, a strongly absorbing gas mixture, an intermediate absorbing gas mixture and a transparent to infrared radiation mixture. To model a double glass window naturally ventilated, a two-dimensional transient laminar incompressible flow formulation is used and the buoyancy effects are accounting for by the Bussinesq approximation. Heat transfer through the windows is calculated and the total heat gain coefficient is compared for the three types of windows. (C) 2009 Elsevier Ltd. All rights reserved.
dc.description50
dc.description7
dc.description1691
dc.description1703
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationEnergy Conversion And Management
dc.relationEnergy Conv. Manag.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectDouble glass window
dc.subjectAbsorbing gases
dc.subjectNumerical modeling
dc.subjectNaturally ventilated window
dc.subjectSimple glass window
dc.subjectSpectrum Correlated Model
dc.subjectRadiative Heat-transfer
dc.subjectAbsorbing Gases
dc.subjectEnclosure
dc.subjectConvection
dc.subjectMixture
dc.subjectEnergy
dc.subjectScreen
dc.subjectSystem
dc.subjectMedia
dc.titleA comparative study of naturally ventilated and gas filled windows for hot climates
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución