dc.creatorFernandes, BS
dc.creatorSaavedra, NK
dc.creatorMaintinguer, SI
dc.creatorSette, LD
dc.creatorOliveira, VM
dc.creatorVaresche, MBA
dc.creatorZaiat, M
dc.date2013
dc.dateJUL
dc.date2014-07-31T13:58:23Z
dc.date2015-11-26T16:57:49Z
dc.date2014-07-31T13:58:23Z
dc.date2015-11-26T16:57:49Z
dc.date.accessioned2018-03-28T23:45:25Z
dc.date.available2018-03-28T23:45:25Z
dc.identifierApplied Biochemistry And Biotechnology. Humana Press Inc, v. 170, n. 6, n. 1348, n. 1366, 2013.
dc.identifier0273-2289
dc.identifierWOS:000321213600007
dc.identifier10.1007/s12010-013-0262-7
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/75016
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/75016
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1277772
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe aim of this study was to investigate the effect of the support material used for biomass attachment and bed porosity on the potential generation of hydrogen gas in an anaerobic bioreactor treating low-strength wastewater. For this purpose, an upflow anaerobic packed-bed (UAPB) reactor fed with sucrose-based synthetic wastewater was used. Three reactors with various support materials (expanded clay, vegetal coal, and low-density polyethylene) were operated for hydraulic retention time (HRT) of 0.5 and 2 h. Based on the results obtained, three further reactors were operated with low-density polyethylene as a material support using various bed porosities (91, 75, and 50 %) for an HRT of 0.5 h. The UAPB reactor was found to be a feasible technology for hydrogen production, reaching a maximum substrate-based hydrogen yield of 7 mol H-2 mol(-1) sucrose for an HRT of 0.5 h. The type of support material used did not affect hydrogen production or the microbial population inside the reactor. Increasing the bed porosity to 91 % provided a continuous and cyclic production of hydrogen, whereas the lower bed porosities resulted in a reduced time of hydrogen production due to biomass accumulation, which resulted in a decreasing working volume.
dc.description170
dc.description6
dc.description1348
dc.description1366
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherHumana Press Inc
dc.publisherTotowa
dc.publisherEUA
dc.relationApplied Biochemistry And Biotechnology
dc.relationAppl. Biochem. Biotechnol.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectBed porosity
dc.subjectClostridium
dc.subjectYeast
dc.subjectExpanded clay
dc.subjectVegetal coal
dc.subjectPolyethylene
dc.subjectRibosomal-rna
dc.subjectPhylogenetic-relationships
dc.subjectBiohydrogen Production
dc.subjectMicrobial Community
dc.subjectSludge
dc.subjectYeasts
dc.subjectSubstrate
dc.subjectCandida
dc.subjectSoil
dc.subjectPh
dc.titleThe Effect of Biomass Immobilization Support Material and Bed Porosity on Hydrogen Production in an Upflow Anaerobic Packed-Bed Bioreactor
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución