dc.creatorBuzzi, CA
dc.creatorDa Silva, PR
dc.creatorTeixeira, MA
dc.date2005
dc.date2014-07-30T19:57:58Z
dc.date2015-11-26T16:57:06Z
dc.date2014-07-30T19:57:58Z
dc.date2015-11-26T16:57:06Z
dc.date.accessioned2018-03-28T23:44:37Z
dc.date.available2018-03-28T23:44:37Z
dc.identifierProceedings Of The American Mathematical Society. Amer Mathematical Soc, v. 133, n. 11, n. 3323, n. 3331, 2005.
dc.identifier0002-9939
dc.identifierWOS:000231108100023
dc.identifier10.1090/S0002-9939-05-07894-9
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/74281
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/74281
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1277568
dc.descriptionIn this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.
dc.description133
dc.description11
dc.description3323
dc.description3331
dc.languageen
dc.publisherAmer Mathematical Soc
dc.publisherProvidence
dc.publisherEUA
dc.relationProceedings Of The American Mathematical Society
dc.relationProc. Amer. Math. Soc.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectsingular perturbations
dc.subjecttime-reversible systems
dc.subjectSymmetry
dc.titleSingular perturbation problems for time-reversible systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución