dc.creatorAntonialli, AIS
dc.creatorDiniz, AE
dc.creatorPederiva, R
dc.date2010
dc.dateJAN
dc.date2014-11-18T15:51:53Z
dc.date2015-11-26T16:56:26Z
dc.date2014-11-18T15:51:53Z
dc.date2015-11-26T16:56:26Z
dc.date.accessioned2018-03-28T23:43:51Z
dc.date.available2018-03-28T23:43:51Z
dc.identifierInternational Journal Of Machine Tools & Manufacture. Elsevier Sci Ltd, v. 50, n. 1, n. 65, n. 74, 2010.
dc.identifier0890-6955
dc.identifierWOS:000273152900007
dc.identifier10.1016/j.ijmachtools.2009.09.006
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/72744
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/72744
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/72744
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1277372
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionMachining processes such as milling, which are characterized by interrupted cutting, are often susceptible to problems involving vibration of the machine-tool-workpiece fixation device system because of the proximity between their natural frequency harmonics and the frequency of tool entry on the workpiece. This phenomenon is particularly important in the milling of titanium alloys, because these materials show a low Young modulus, and hence, an extended elastic behavior, which means tremendous variations in chip thickness and fluctuating cutting forces. Moreover, very low heat conductivity causes the formation of serrated chips, which further increase the fluctuation in cutting forces. The purpose of this work is to study the influence of the tool entering angle on the stability of the process and on tool life based on a time and frequency domain analysis of the cutting forces. The results show that lower entering angles may provide stabler cutting, as indicated by the regular tool wear instead of the microchipping resulting from the use of a higher value of this angle. Although cutting forces are larger at lower entering angles, the tool life is much longer, since most of this load is associated with low frequencies, at which the tool behaves like a rigid body. (C) 2009 Elsevier Ltd. All rights reserved.
dc.description50
dc.description1
dc.description65
dc.description74
dc.descriptionSandvik Coromant
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherElsevier Sci Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationInternational Journal Of Machine Tools & Manufacture
dc.relationInt. J. Mach. Tools Manuf.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectMachining
dc.subjectMilling
dc.subjectVibration
dc.subjectCutting forces
dc.subjectTitanium alloys
dc.subjectMachinability
dc.subjectTi-6al-4v
dc.titleVibration analysis of cutting force in titanium alloy milling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución