Artículos de revistas
Matching signatures and Pfaffian graphs
Registro en:
Discrete Mathematics. Elsevier Science Bv, v. 311, n. 4, n. 289, n. 294, 2011.
0012-365X
WOS:000286793500010
10.1016/j.disc.2010.10.014
Autor
Miranda, AAA
Lucchesi, CL
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Perfect matchings of k-Pfaffian graphs may be enumerated in polynomial time on the number of vertices, for fixed k. In general, this enumeration problem is #P-complete. We give a Composition Theorem of 2r-Pfaffian graphs from r Pfaffian spanning subgraphs. Constructions of k-Pfaffian graphs known prior to this seem to be of a very different and essentially topological nature. We apply our Composition Theorem to produce a bipartite graph on 10 vertices that is 6-Pfaffian but not 4-Pfaffian. This is a counter-example to a conjecture of Norine (2009) [8], which states that the Pfaffian number of a graph is a power of four. (C) 2010 Elsevier B.V. All rights reserved. 311 4 289 294 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)