dc.creatorTozoni, SA
dc.date2004
dc.date2014-11-18T11:50:11Z
dc.date2015-11-26T16:54:37Z
dc.date2014-11-18T11:50:11Z
dc.date2015-11-26T16:54:37Z
dc.date.accessioned2018-03-28T23:41:55Z
dc.date.available2018-03-28T23:41:55Z
dc.identifierStudia Mathematica. Polish Acad Sciences Inst Mathematics, v. 161, n. 1, n. 71, n. 97, 2004.
dc.identifier0039-3223
dc.identifierWOS:000220373400005
dc.identifier10.4064/sm161-1-5
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/72813
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/72813
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/72813
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1276908
dc.descriptionLet X be a homogeneous space and let E be a UMD Banach space with a normalized unconditional basis (e(j))(jgreater than or equal to1). Given an operator T from L-c(infinity) to L-1(X), we consider the vector-valued extension (T) over tilde of T given by (T) over tilde(Sigma(j)f(j)e(j)) = Sigma(j)T(f(j))e(j). We prove a weighted integral inequality for the vector-valued extension of the Hardy-Littlewood maximal operator and a weighted Fefferman-Stein inequality between the vector-valued extensions of the Hardy-Littlewood and the sharp maximal operators, in the context of Orlicz spaces. We give sufficient conditions on the kernel of a singular integral operator to have the boundedness of the vector-valued extension of this operator on L-p (X, Wdmu; E) for 1 < p < infinity and for a weight W in the Muckenhoupt class A(p)(X). Applications to singular integral operators on the unit sphere S-n and on a finite product of local fields K-n are given. The versions of all these results for vector-valued extensions of operators on functions defined on a homogeneous space X and with values in a UMD Banach lattice are also given.
dc.description161
dc.description1
dc.description71
dc.description97
dc.languageen
dc.publisherPolish Acad Sciences Inst Mathematics
dc.publisherWarsaw
dc.publisherPolónia
dc.relationStudia Mathematica
dc.relationStudia Math.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectsingular integral
dc.subjectmaximal function
dc.subjecthomogeneous space
dc.subjectUMD Banach space
dc.subjectA(p)-weights
dc.subjectCalderon-zygmund Theory
dc.subjectOperators
dc.subjectMartingales
dc.subjectVariables
dc.subjectField
dc.titleWeighted norm inequalities for vector-valued singular integrals on homogeneous spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución