dc.creator | Tozoni, SA | |
dc.date | 2004 | |
dc.date | 2014-11-18T11:50:11Z | |
dc.date | 2015-11-26T16:54:37Z | |
dc.date | 2014-11-18T11:50:11Z | |
dc.date | 2015-11-26T16:54:37Z | |
dc.date.accessioned | 2018-03-28T23:41:55Z | |
dc.date.available | 2018-03-28T23:41:55Z | |
dc.identifier | Studia Mathematica. Polish Acad Sciences Inst Mathematics, v. 161, n. 1, n. 71, n. 97, 2004. | |
dc.identifier | 0039-3223 | |
dc.identifier | WOS:000220373400005 | |
dc.identifier | 10.4064/sm161-1-5 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/72813 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/72813 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/72813 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1276908 | |
dc.description | Let X be a homogeneous space and let E be a UMD Banach space with a normalized unconditional basis (e(j))(jgreater than or equal to1). Given an operator T from L-c(infinity) to L-1(X), we consider the vector-valued extension (T) over tilde of T given by (T) over tilde(Sigma(j)f(j)e(j)) = Sigma(j)T(f(j))e(j). We prove a weighted integral inequality for the vector-valued extension of the Hardy-Littlewood maximal operator and a weighted Fefferman-Stein inequality between the vector-valued extensions of the Hardy-Littlewood and the sharp maximal operators, in the context of Orlicz spaces. We give sufficient conditions on the kernel of a singular integral operator to have the boundedness of the vector-valued extension of this operator on L-p (X, Wdmu; E) for 1 < p < infinity and for a weight W in the Muckenhoupt class A(p)(X). Applications to singular integral operators on the unit sphere S-n and on a finite product of local fields K-n are given. The versions of all these results for vector-valued extensions of operators on functions defined on a homogeneous space X and with values in a UMD Banach lattice are also given. | |
dc.description | 161 | |
dc.description | 1 | |
dc.description | 71 | |
dc.description | 97 | |
dc.language | en | |
dc.publisher | Polish Acad Sciences Inst Mathematics | |
dc.publisher | Warsaw | |
dc.publisher | Polónia | |
dc.relation | Studia Mathematica | |
dc.relation | Studia Math. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | singular integral | |
dc.subject | maximal function | |
dc.subject | homogeneous space | |
dc.subject | UMD Banach space | |
dc.subject | A(p)-weights | |
dc.subject | Calderon-zygmund Theory | |
dc.subject | Operators | |
dc.subject | Martingales | |
dc.subject | Variables | |
dc.subject | Field | |
dc.title | Weighted norm inequalities for vector-valued singular integrals on homogeneous spaces | |
dc.type | Artículos de revistas | |