dc.creatorde Carvalho, MH
dc.creatorLucchesi, CL
dc.creatorMurty, USR
dc.date2005
dc.dateJAN
dc.date2014-11-18T11:05:16Z
dc.date2015-11-26T16:54:22Z
dc.date2014-11-18T11:05:16Z
dc.date2015-11-26T16:54:22Z
dc.date.accessioned2018-03-28T23:41:37Z
dc.date.available2018-03-28T23:41:37Z
dc.identifierJournal Of Graph Theory. John Wiley & Sons Inc, v. 48, n. 1, n. 19, n. 50, 2005.
dc.identifier0364-9024
dc.identifierWOS:000225719000002
dc.identifier10.1002/jgt.20036
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68438
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/68438
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68438
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1276834
dc.descriptionA graph with at least two vertices is matching covered if it is connected and each edge lies in some perfect matching. A matching covered graph G is extremal if the number of perfect matchings of G is equal to the dimension of the lattice spanned by the set of incidence vectors of perfect matchings of G. We first establish several basic properties of extremal matching covered graphs. In particular, we show that every extremal brick may be obtained by splicing graphs whose underlying simple graphs are odd wheels. Then, using the main theorem proved in [2] and [3], we find all the extremal cubic matching covered graphs. (C) 2004 Wiley Periodicals, Inc.
dc.description48
dc.description1
dc.description19
dc.description50
dc.languageen
dc.publisherJohn Wiley & Sons Inc
dc.publisherHoboken
dc.publisherEUA
dc.relationJournal Of Graph Theory
dc.relationJ. Graph Theory
dc.rightsfechado
dc.rightshttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dc.sourceWeb of Science
dc.subjectgraphs
dc.subjectperfect matchings
dc.subjectmatching lattice
dc.subjectDecompositions
dc.subjectConjecture
dc.subjectLattice
dc.subjectLovasz
dc.subjectBricks
dc.titleGraphs with independent perfect matchings
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución