dc.creatorGOMES, SM
dc.creatorCORTINA, E
dc.date1995
dc.dateSEP
dc.date2014-07-30T18:43:24Z
dc.date2015-11-26T16:54:03Z
dc.date2014-07-30T18:43:24Z
dc.date2015-11-26T16:54:03Z
dc.date.accessioned2018-03-28T23:41:18Z
dc.date.available2018-03-28T23:41:18Z
dc.identifierSiam Journal On Mathematical Analysis. Siam Publications, v. 26, n. 5, n. 1386, n. 1402, 1995.
dc.identifier0036-1410
dc.identifierWOS:A1995RR90900016
dc.identifier10.1137/S1052623493255096
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71932
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71932
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1276753
dc.descriptionA generalization of sampling series is introduced by considering expansions in terms of scaled translates of a basic function with coefficients given by sampled values of the convolution of a function f with a kernel of Fejer's type, Such expressions have been used in finite element approximations, sampling theory and, more recently in wavelet analysis. This article is concerned with the convergence of these series for functions f that exhibit some kind of local singular behavior in time or frequency domains. Pointwise convergence at discontinuity points and Gibbs phenomena are analysed. The convergence in the H-s-norm is also investigated. Special attention is focused on multiresolution analysis approximations and examples using the Daubechies scaling functions are presented.
dc.description26
dc.description5
dc.description1386
dc.description1402
dc.languageen
dc.publisherSiam Publications
dc.publisherPhiladelphia
dc.relationSiam Journal On Mathematical Analysis
dc.relationSIAM J. Math. Anal.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectSAMPLING SERIES
dc.subjectWAVELETS
dc.subjectGIBBS PHENOMENON
dc.subjectCompactly Supported Wavelets
dc.subjectTransform
dc.titleSOME RESULTS ON THE CONVERGENCE OF SAMPLING SERIES BASED ON CONVOLUTION INTEGRALS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución