dc.creatorMarchiori, MA
dc.creatorde Aguiar, MAM
dc.date2011
dc.date41426
dc.date2014-07-30T17:19:38Z
dc.date2015-11-26T16:52:14Z
dc.date2014-07-30T17:19:38Z
dc.date2015-11-26T16:52:14Z
dc.date.accessioned2018-03-28T23:39:08Z
dc.date.available2018-03-28T23:39:08Z
dc.identifierPhysical Review E. Amer Physical Soc, v. 83, n. 6, 2011.
dc.identifier1539-3755
dc.identifierWOS:000291702400001
dc.identifier10.1103/PhysRevE.83.061112
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/64801
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/64801
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1276221
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWe study the flow of energy between a harmonic oscillator (HO) and an external environment consisting of N two-degrees-of-freedom nonlinear oscillators, ranging from integrable to chaotic according to a control parameter. The coupling between the HO and the environment is bilinear in the coordinates and scales with system size as 1/root N. We study the conditions for energy dissipation and thermalization as a function of N and of the dynamical regime of the nonlinear oscillators. The study is classical and based on a single realization of the dynamics, as opposed to ensemble averages over many realizations. We find that dissipation occurs in the chaotic regime for fairly small values of N, leading to the thermalization of the HO and the environment in a Boltzmann distribution of energies for a well-defined temperature. We develop a simple analytical treatment, based on the linear response theory, that justifies the coupling scaling and reproduces the numerical simulations when the environment is in the chaotic regime.
dc.description83
dc.description6
dc.description1
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherAmer Physical Soc
dc.publisherCollege Pk
dc.publisherEUA
dc.relationPhysical Review E
dc.relationPhys. Rev. E
dc.rightsaberto
dc.rightshttp://publish.aps.org/authors/transfer-of-copyright-agreement
dc.sourceWeb of Science
dc.subjectErgodic Adiabatic Invariants
dc.subjectQuantum-brownian-motion
dc.subjectClassical Dissipation
dc.subjectSystems
dc.subjectPrinciple
dc.subjectDynamics
dc.subjectGoodness
dc.subjectParticle
dc.subjectDecay
dc.titleEnergy dissipation via coupling with a finite chaotic environment
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución