dc.creatorSouza, DOC
dc.creatorMenegalli, FC
dc.date2011
dc.date45962
dc.date2014-07-30T18:00:27Z
dc.date2015-11-26T16:51:21Z
dc.date2014-07-30T18:00:27Z
dc.date2015-11-26T16:51:21Z
dc.date.accessioned2018-03-28T23:38:09Z
dc.date.available2018-03-28T23:38:09Z
dc.identifierPowder Technology. Elsevier Science Sa, v. 214, n. 1, n. 57, n. 63, 2011.
dc.identifier0032-5910
dc.identifierWOS:000296126300008
dc.identifier10.1016/j.powtec.2011.07.035
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/69225
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/69225
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1275965
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionImage analysis can serve as a fast and convenient approach for the analysis of particle size and shape. However, there is no consensus as to the minimum number of particles required for such analysis and the statistical methodology to be used in its evaluation. Four methodologies for determination of this minimum number for particle size distribution analysis and two for that of particle shape were tested using particles of guava juice powder and guava juice powder granulated in a fluidized bed. The Chi-Square test proved to be a robust and efficient mean for determination of particle size distribution and particle shape characterization. 550 particles was found to be the minimum number of particles necessary for the determination of the particle size distributions, with 100 particles required for determination of the shape descriptors for this specific material. (c) 2011 Elsevier B.V. All rights reserved.
dc.description214
dc.description1
dc.description57
dc.description63
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageen
dc.publisherElsevier Science Sa
dc.publisherLausanne
dc.publisherSuíça
dc.relationPowder Technology
dc.relationPowder Technol.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectKolmogorov-Smarnov test
dc.subjectChi-Square test
dc.subjectGranulation
dc.subjectImage analysis
dc.subjectMorphology
dc.subjectGuava
dc.subjectPowder
dc.subjectAgglomeration
dc.subjectBed
dc.titleImage analysis: Statistical study of particle size distribution and shape characterization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución