dc.creatorFreire, RA
dc.date2012
dc.date2014-07-30T17:47:06Z
dc.date2015-11-26T16:50:54Z
dc.date2014-07-30T17:47:06Z
dc.date2015-11-26T16:50:54Z
dc.date.accessioned2018-03-28T23:37:41Z
dc.date.available2018-03-28T23:37:41Z
dc.identifierNotre Dame Journal Of Formal Logic. Duke Univ Press, v. 53, n. 4, n. 525, n. 547, 2012.
dc.identifier0029-4527
dc.identifierWOS:000311654300006
dc.identifier10.1215/00294527-1722737
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/67623
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/67623
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1275849
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThe aim of the present paper is to provide a robust classification of valid sentences in set theory by means of existence and related notions and, in this way, to capture similarities and dissimilarities among the axioms of set theory. In order to achieve this, precise definitions for the notions of productive and nonproductive assertions, constructive and nonconstructive productive assertions, and conditional and unconditional productive assertions, among others, will be presented. These definitions constitute the result of a semantical analysis of the notions involved. The conceptual clarification developed here results in a classification of valid sentences of set theory that goes against the standard view that extensionality is not an existence assertion.
dc.description53
dc.description4
dc.description525
dc.description547
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFAPESP [2009/10751-8]
dc.languageen
dc.publisherDuke Univ Press
dc.publisherDurham
dc.publisherEUA
dc.relationNotre Dame Journal Of Formal Logic
dc.relationNotre Dame J. Form. Log.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectexistence axioms
dc.subjectfoundations of set theory
dc.titleOn Existence in Set Theory
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución