dc.creator | Bazan, FSV | |
dc.creator | Borges, LS | |
dc.creator | Francisco, JB | |
dc.date | 2012 | |
dc.date | 37196 | |
dc.date | 2014-07-30T17:47:01Z | |
dc.date | 2015-11-26T16:49:55Z | |
dc.date | 2014-07-30T17:47:01Z | |
dc.date | 2015-11-26T16:49:55Z | |
dc.date.accessioned | 2018-03-28T23:36:40Z | |
dc.date.available | 2018-03-28T23:36:40Z | |
dc.identifier | Applied Mathematics And Computation. Elsevier Science Inc, v. 219, n. 4, n. 2100, n. 2113, 2012. | |
dc.identifier | 0096-3003 | |
dc.identifier | WOS:000310504000064 | |
dc.identifier | 10.1016/j.amc.2012.08.054 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/67581 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/67581 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1275590 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | A crucial problem concerning Tikhonov regularization is the proper choice of the regularization parameter. This paper deals with a generalization of a parameter choice rule due to Reginska (1996) [31], analyzed and algorithmically realized through a fast fixed-point method in Bazan (2008) [3], which results in a fixed-point method for multi-parameter Tikhonov regularization called MFP. Like the single-parameter case, the algorithm does not require any information on the noise level. Further, combining projection over the Krylov subspace generated by the Golub-Kahan bidiagonalization (GKB) algorithm and the MFP method at each iteration, we derive a new algorithm for large-scale multi-parameter Tikhonov regularization problems. The performance of MFP when applied to well known discrete ill-posed problems is evaluated and compared with results obtained by the discrepancy principle. The results indicate that MFP is efficient and competitive. The efficiency of the new algorithm on a super-resolution problem is also illustrated. (C) 2012 Elsevier Inc. All rights reserved. | |
dc.description | 219 | |
dc.description | 4 | |
dc.description | 2100 | |
dc.description | 2113 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | CNPq [308154/2008-8, 479729/2011-5] | |
dc.description | FAPESP [2009/52193-1] | |
dc.language | en | |
dc.publisher | Elsevier Science Inc | |
dc.publisher | New York | |
dc.publisher | EUA | |
dc.relation | Applied Mathematics And Computation | |
dc.relation | Appl. Math. Comput. | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | Parameter choice rules | |
dc.subject | Multi-parameter Tikhonov regularization | |
dc.subject | Large-scale discrete ill-posed problems | |
dc.subject | Ill-posed Problems | |
dc.subject | L-curve | |
dc.subject | Algorithm | |
dc.subject | Equations | |
dc.title | On a generalization of Reginska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization | |
dc.type | Artículos de revistas | |