dc.creatorBazan, FSV
dc.creatorBorges, LS
dc.creatorFrancisco, JB
dc.date2012
dc.date37196
dc.date2014-07-30T17:47:01Z
dc.date2015-11-26T16:49:55Z
dc.date2014-07-30T17:47:01Z
dc.date2015-11-26T16:49:55Z
dc.date.accessioned2018-03-28T23:36:40Z
dc.date.available2018-03-28T23:36:40Z
dc.identifierApplied Mathematics And Computation. Elsevier Science Inc, v. 219, n. 4, n. 2100, n. 2113, 2012.
dc.identifier0096-3003
dc.identifierWOS:000310504000064
dc.identifier10.1016/j.amc.2012.08.054
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/67581
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/67581
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1275590
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionA crucial problem concerning Tikhonov regularization is the proper choice of the regularization parameter. This paper deals with a generalization of a parameter choice rule due to Reginska (1996) [31], analyzed and algorithmically realized through a fast fixed-point method in Bazan (2008) [3], which results in a fixed-point method for multi-parameter Tikhonov regularization called MFP. Like the single-parameter case, the algorithm does not require any information on the noise level. Further, combining projection over the Krylov subspace generated by the Golub-Kahan bidiagonalization (GKB) algorithm and the MFP method at each iteration, we derive a new algorithm for large-scale multi-parameter Tikhonov regularization problems. The performance of MFP when applied to well known discrete ill-posed problems is evaluated and compared with results obtained by the discrepancy principle. The results indicate that MFP is efficient and competitive. The efficiency of the new algorithm on a super-resolution problem is also illustrated. (C) 2012 Elsevier Inc. All rights reserved.
dc.description219
dc.description4
dc.description2100
dc.description2113
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCNPq [308154/2008-8, 479729/2011-5]
dc.descriptionFAPESP [2009/52193-1]
dc.languageen
dc.publisherElsevier Science Inc
dc.publisherNew York
dc.publisherEUA
dc.relationApplied Mathematics And Computation
dc.relationAppl. Math. Comput.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectParameter choice rules
dc.subjectMulti-parameter Tikhonov regularization
dc.subjectLarge-scale discrete ill-posed problems
dc.subjectIll-posed Problems
dc.subjectL-curve
dc.subjectAlgorithm
dc.subjectEquations
dc.titleOn a generalization of Reginska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución