dc.creatorTsai, R
dc.creatorHotta, LK
dc.date2013
dc.dateAUG
dc.date2014-07-30T18:09:48Z
dc.date2015-11-26T16:48:17Z
dc.date2014-07-30T18:09:48Z
dc.date2015-11-26T16:48:17Z
dc.date.accessioned2018-03-28T23:34:43Z
dc.date.available2018-03-28T23:34:43Z
dc.identifierBrazilian Journal Of Probability And Statistics. Brazilian Statistical Association, v. 27, n. 3, n. 357, n. 376, 2013.
dc.identifier0103-0752
dc.identifierWOS:000320741800006
dc.identifier10.1214/12-BJPS185
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/70688
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/70688
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1275099
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionPolyhazard models constitute a flexible family for fitting lifetime data. The main advantages over single hazard models include the ability to represent hazard rate functions with unusual shapes and the ease of including covariates. The primary goal of this paper was to include dependence among the latent causes of failure by modeling dependence using copula functions. The choice of the copula function as well as the latent hazard functions results in a flexible class of survival functions that is able to represent hazard rate functions with unusual shapes, such as bathtub or multimodal curves, while also modeling local effects associated with competing risks. The model is applied to two sets of simulated data as well as to data representing the unemployment duration of a sample of socially insured German workers. Model identification and estimation are also discussed.
dc.description27
dc.description3
dc.description357
dc.description376
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherBrazilian Statistical Association
dc.publisherSao Paulo
dc.publisherBrasil
dc.relationBrazilian Journal Of Probability And Statistics
dc.relationBraz. J. Probab. Stat.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectPolyhazard models
dc.subjectcopula
dc.subjectcompeting risks
dc.subjectCompeting Risks
dc.subjectWeibull Distribution
dc.subjectBayesian-analysis
dc.subjectLifetime Data
dc.subjectIdentifiability
dc.subjectSurvival
dc.subjectCopula
dc.titlePolyhazard models with dependent causes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución