dc.creatorDias, R
dc.creatorGarcia, NL
dc.creatorSchmidt, AM
dc.date2013
dc.dateAUG
dc.date2014-08-01T12:54:29Z
dc.date2015-11-26T16:47:04Z
dc.date2014-08-01T12:54:29Z
dc.date2015-11-26T16:47:04Z
dc.date.accessioned2018-03-28T23:33:05Z
dc.date.available2018-03-28T23:33:05Z
dc.identifierTechnometrics. Amer Statistical Assoc, v. 55, n. 3, n. 321, n. 334, 2013.
dc.identifier0040-1706
dc.identifierWOS:000323547200011
dc.identifier10.1080/00401706.2013.765316
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/75893
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/75893
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1274730
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn many areas of science, one aims to estimate latent subpopulation mean curves based only on observations of aggregated population curves. By aggregated curves we mean linear combination of functional data that cannot be observed individually. We assume that several aggregated curves with linearly independent coefficients are available, and each aggregated curve is an independent partial realization of a Gaussian process with mean modeled through a weighted linear combination of the disaggregated curves. The mean of the Gaussian process is modeled using B-splines basis expansion methods. We propose a semiparametric, valid covariance function that is modeled as the product of a nonparametric variance function by a correlation function. The variance function is described as the square of a function that is expanded using B-splines basis functions. This results in a nonstationary covariance function and includes constant variance models as special cases. Inference is performed following the Bayesian paradigm allowing experts' opinion, when available, to be accounted for. Moreover, it naturally provides the uncertainty associated with the parameters' estimates and fitted values. We analyze artificial datasets and discuss how to choose among the different covariance models. We focus on two different real examples: a calibration problem for NIR spectroscopy data and an analysis of distribution of energy among different types of consumers. In the latter example, our proposed covariance function captures interesting features of the data. Further analysis of different artificial datasets, as well as computer code and data is available as supplementary material online.
dc.description55
dc.description3
dc.description321
dc.description334
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCNPq [302755/2010-1, 476764/2010-6, 302182/2010-1, 475504/2008-9]
dc.languageen
dc.publisherAmer Statistical Assoc
dc.publisherAlexandria
dc.publisherEUA
dc.relationTechnometrics
dc.relationTechnometrics
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectBayes' theorem
dc.subjectB-splines
dc.subjectCovariance function
dc.subjectGaussian process
dc.subjectDensity-estimation
dc.subjectLongitudinal Data
dc.subjectSplines
dc.subjectCurves
dc.titleA Hierarchical Model for Aggregated Functional Data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución