dc.creatorBolivar, AO
dc.date2003
dc.dateAPR
dc.date2014-07-30T17:05:04Z
dc.date2015-11-26T16:46:29Z
dc.date2014-07-30T17:05:04Z
dc.date2015-11-26T16:46:29Z
dc.date.accessioned2018-03-28T23:32:21Z
dc.date.available2018-03-28T23:32:21Z
dc.identifierCanadian Journal Of Physics. Natl Research Council Canada, v. 81, n. 4, n. 663, n. 673, 2003.
dc.identifier0008-4204
dc.identifierWOS:000184491600004
dc.identifier10.1139/P02-121
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/63600
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/63600
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1274543
dc.descriptionWe have worked out a quantization method directly from classical dynamics without using Hamiltonian and Lagrangian functions; we call it dynamical quantization. The present article compares such a method with the Dirac and Feynman quantization procedures and also verifies the logical consistence of the dynamical quantization calculating the classical limit of a Brownian particle, for example.
dc.description81
dc.description4
dc.description663
dc.description673
dc.languageen
dc.publisherNatl Research Council Canada
dc.publisherOttawa
dc.publisherCanadá
dc.relationCanadian Journal Of Physics
dc.relationCan. J. Phys.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectFeynman Path-integrals
dc.subjectQuantum Brownian-motion
dc.subjectHarmonic-oscillator
dc.subjectVariational-principles
dc.subjectHamiltonian Operators
dc.subjectDissipative Systems
dc.subjectVernon Approach
dc.subjectAmbiguities
dc.subjectMechanics
dc.subjectEquation
dc.titleDynamical quantization and classical limit
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución