dc.creatorArtes, JC
dc.creatorLlibre, J
dc.creatorMedrado, JC
dc.creatorTeixeira, MA
dc.date2014
dc.dateJAN
dc.date2014-07-30T14:32:09Z
dc.date2015-11-26T16:46:29Z
dc.date2014-07-30T14:32:09Z
dc.date2015-11-26T16:46:29Z
dc.date.accessioned2018-03-28T23:32:21Z
dc.date.available2018-03-28T23:32:21Z
dc.identifierMathematics And Computers In Simulation. Elsevier Science Bv, v. 95, n. 13, n. 22, 2014.
dc.identifier0378-4754
dc.identifier1872-7166
dc.identifierWOS:000328297300003
dc.identifier10.1016/j.matcom.2013.02.007
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/59838
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/59838
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1274540
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionIn this paper we study piecewise linear differential systems formed by two regions separated by a straight line so that each system has a real saddle point in its region of definition. If both saddles are conveniently situated, they produce a transition flow from a segment of the splitting line to another segment of the same line, and this produces a generalized singular point on the line. This point is a focus or a center and there can be found limit cycles around it. We are going to show that the maximum number of limit cycles that can bifurcate from this focus is two. One of them appears through a Hopf bifurcation and the second when the focus becomes a node by means of the sliding. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
dc.description95
dc.descriptionSI
dc.description13
dc.description22
dc.descriptionMICIIN/FEDER grant [MTM2008-03437]
dc.descriptionAGAUR grant [2009SGR-410]
dc.descriptionICREA Academia
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionproject AUXPE-DGU [15/2010]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionMICIIN/FEDER grant [MTM2008-03437]
dc.descriptionAGAUR grant [2009SGR-410]
dc.descriptionCAPES [PHB-2009-0025-PC]
dc.descriptionproject AUXPE-DGU [15/2010]
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationMathematics And Computers In Simulation
dc.relationMath. Comput. Simul.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectNon-smooth differential system
dc.subjectLimit cycle
dc.subjectPiecewise linear differential system
dc.subjectHopf bifurcation
dc.subjectSliding limit cycle
dc.subjectPlanar Filippov Systems
dc.subjectGeneralized Hopf-bifurcation
dc.titlePiecewise linear differential systems with two real saddles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución