dc.creatorFreire, IL
dc.creatorSampaio, JCS
dc.date2014
dc.dateFEB
dc.date2014-07-30T17:53:05Z
dc.date2015-11-26T16:46:20Z
dc.date2014-07-30T17:53:05Z
dc.date2015-11-26T16:46:20Z
dc.date.accessioned2018-03-28T23:32:10Z
dc.date.available2018-03-28T23:32:10Z
dc.identifierCommunications In Nonlinear Science And Numerical Simulation. Elsevier Science Bv, v. 19, n. 2, n. 350, n. 360, 2014.
dc.identifier1007-5704
dc.identifierWOS:000325128700005
dc.identifier10.1016/j.cnsns.2013.06.010
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68726
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68726
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1274493
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionIn this paper we consider a class of evolution equations up to fifth-order containing many arbitrary smooth functions from the point of view of nonlinear self-adjointness. The studied class includes many important equations modeling different phenomena. In particular, some of the considered equations were studied previously by other researchers from the point of view of quasi self-adjointness or strictly self-adjointness. Therefore we find new local conservation laws for these equations invoking the obtained results on nonlinearly self-adjointness and the conservation theorem proposed by Nail Ibragimov. (c) 2013 Elsevier B.V. All rights reserved.
dc.description19
dc.description2
dc.descriptionSI
dc.description350
dc.description360
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFAPESP [2011/19089-6, 2011/23538-0]
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationCommunications In Nonlinear Science And Numerical Simulation
dc.relationCommun. Nonlinear Sci. Numer. Simul.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectIbragimov theorem
dc.subjectNonlinearly self-adjoint equations
dc.subjectConservation laws
dc.subjectEvolution equations
dc.subjectDifferential-equations
dc.subjectLagrangians
dc.subjectSubclasses
dc.subjectSymmetries
dc.subject3rd
dc.titleOn the nonlinear self-adjointness and local conservation laws for a class of evolution equations unifying many models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución