dc.creatorRodrigues, RN
dc.creatorLing, LL
dc.creatorGovindaraju, V
dc.date2009
dc.dateJUN
dc.date2014-11-17T20:25:04Z
dc.date2015-11-26T16:46:19Z
dc.date2014-11-17T20:25:04Z
dc.date2015-11-26T16:46:19Z
dc.date.accessioned2018-03-28T23:32:06Z
dc.date.available2018-03-28T23:32:06Z
dc.identifierJournal Of Visual Languages And Computing. Academic Press Ltd- Elsevier Science Ltd, v. 20, n. 3, n. 169, n. 179, 2009.
dc.identifier1045-926X
dc.identifierWOS:000266347300005
dc.identifier10.1016/j.jvlc.2009.01.010
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71195
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/71195
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71195
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1274477
dc.descriptionIn this paper, we address,the security of multimodal biometric systems when one of the modes is successfully spoofed. We propose two novel fusion schemes that can increase the security of multimodal biometric systems. The first is an extension of the likelihood ratio based fusion scheme and the other uses fuzzy logic. Besides the matching score and sample quality score, our proposed fusion schemes also take into account the intrinsic security of each biometric system being fused. Experimental results have shown that the proposed methods are more robust against spoof attacks when compared with traditional fusion methods. (c) 2009 Elsevier Ltd. All rights reserved.
dc.description20
dc.description3
dc.description169
dc.description179
dc.languageen
dc.publisherAcademic Press Ltd- Elsevier Science Ltd
dc.publisherLondon
dc.publisherInglaterra
dc.relationJournal Of Visual Languages And Computing
dc.relationJ. Vis. Lang. Comput.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectMultimodal biometrics
dc.subjectSecure biometrics
dc.subjectFace recognition
dc.subjectFingerprint
dc.subjectIdentity Verification
dc.subjectFace
dc.titleRobustness of multimodal biometric fusion methods against spoof attacks
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución