dc.creator | Liberti, L | |
dc.creator | Lavor, C | |
dc.creator | Mucherino, A | |
dc.creator | Maculan, N | |
dc.date | 2011 | |
dc.date | JAN | |
dc.date | 2014-07-30T14:03:40Z | |
dc.date | 2015-11-26T16:45:02Z | |
dc.date | 2014-07-30T14:03:40Z | |
dc.date | 2015-11-26T16:45:02Z | |
dc.date.accessioned | 2018-03-28T23:30:34Z | |
dc.date.available | 2018-03-28T23:30:34Z | |
dc.identifier | International Transactions In Operational Research. Wiley-blackwell, v. 18, n. 1, n. 33, n. 51, 2011. | |
dc.identifier | 0969-6016 | |
dc.identifier | WOS:000294307600002 | |
dc.identifier | 10.1111/j.1475-3995.2009.00757.x | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57756 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/57756 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1274103 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Distance geometry problems (DGP) arise from the need to position entities in the Euclidean K-space given some of their respective distances. Entities may be atoms (molecular distance geometry), wireless sensors (sensor network localization), or abstract vertices of a graph (graph drawing). In the context of molecular distance geometry, the distances are usually known because of chemical properties and nuclear magnetic resonance experiments; sensor networks can estimate their relative distance by recording the power loss during a two-way exchange; finally, when drawing graphs in two or three dimensions, the graph to be drawn is given, and therefore distances between vertices can be computed. DGPs involve a search in a continuous Euclidean space, but sometimes the problem structure helps reduce the search to a discrete set of points. In this paper we survey some continuous and discrete methods for solving some problems of molecular distance geometry. | |
dc.description | 18 | |
dc.description | 1 | |
dc.description | 33 | |
dc.description | 51 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | en | |
dc.publisher | Wiley-blackwell | |
dc.publisher | Malden | |
dc.publisher | EUA | |
dc.relation | International Transactions In Operational Research | |
dc.relation | Int. Trans. Oper. Res. | |
dc.rights | fechado | |
dc.rights | http://olabout.wiley.com/WileyCDA/Section/id-406071.html | |
dc.source | Web of Science | |
dc.subject | distance geometry | |
dc.subject | protein conformation | |
dc.subject | optimization | |
dc.subject | Diffusion Equation Method | |
dc.subject | Variable Neighborhood Search | |
dc.subject | Global Optimization | |
dc.subject | Buildup Algorithm | |
dc.subject | Atomic Distances | |
dc.subject | Continuation | |
dc.subject | Performance | |
dc.subject | Clusters | |
dc.subject | Minlps | |
dc.title | Molecular distance geometry methods: from continuous to discrete | |
dc.type | Artículos de revistas | |