dc.creator | Catuogno, PJ | |
dc.creator | Lucinger, LR | |
dc.date | 2014 | |
dc.date | JUN | |
dc.date | 2014-07-30T14:19:23Z | |
dc.date | 2015-11-26T16:44:32Z | |
dc.date | 2014-07-30T14:19:23Z | |
dc.date | 2015-11-26T16:44:32Z | |
dc.date.accessioned | 2018-03-28T23:29:54Z | |
dc.date.available | 2018-03-28T23:29:54Z | |
dc.identifier | Journal Of Nonlinear Mathematical Physics. Taylor & Francis Ltd, v. 21, n. 2, n. 149, n. 165, 2014. | |
dc.identifier | 1402-9251 | |
dc.identifier | 1776-0852 | |
dc.identifier | WOS:000335968500001 | |
dc.identifier | 10.1080/14029251.2014.900984 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/58868 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/58868 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1273955 | |
dc.description | We introduce the notion of a random symmetry. It consists of taking the action given by a deterministic flow that maintains the solutions of a given differential equation invariant and replacing it with a stochastic flow. This generates a random action, which we call a random symmetry. | |
dc.description | 21 | |
dc.description | 2 | |
dc.description | 149 | |
dc.description | 165 | |
dc.language | en | |
dc.publisher | Taylor & Francis Ltd | |
dc.publisher | Abingdon | |
dc.publisher | Inglaterra | |
dc.relation | Journal Of Nonlinear Mathematical Physics | |
dc.relation | J. Nonlinear Math. Phys. | |
dc.rights | fechado | |
dc.rights | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
dc.source | Web of Science | |
dc.subject | Lie-point symmetries | |
dc.subject | Determining equations | |
dc.subject | Random symmetries | |
dc.subject | Stochastic differential equations | |
dc.subject | Ito formula | |
dc.subject | Stochastic Differential-equations | |
dc.subject | Stratonovich Dynamical-systems | |
dc.subject | Conserved Quantities | |
dc.subject | It(o)over-cap | |
dc.title | Random Lie-point symmetries | |
dc.type | Artículos de revistas | |