dc.creator | Martinez, AG | |
dc.creator | De Pierro, AR | |
dc.date | 2008 | |
dc.date | APR | |
dc.date | 2014-07-30T13:49:25Z | |
dc.date | 2015-11-26T16:44:21Z | |
dc.date | 2014-07-30T13:49:25Z | |
dc.date | 2015-11-26T16:44:21Z | |
dc.date.accessioned | 2018-03-28T23:29:40Z | |
dc.date.available | 2018-03-28T23:29:40Z | |
dc.identifier | Ieee Transactions On Signal Processing. Ieee-inst Electrical Electronics Engineers Inc, v. 56, n. 4, n. 1489, n. 1501, 2008. | |
dc.identifier | 1053-587X | |
dc.identifier | WOS:000254118300016 | |
dc.identifier | 10.1109/TSP.2007.911290 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54822 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/54822 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1273895 | |
dc.description | Recently, new polynomial approximation formulas were proposed for the reconstruction of compactly supported piecewise smooth functions from Fourier data. Formulas for zero and first degree polynomials were presented. For higher degree approximations, polynomial formulas become extremely complicated to be handled. In this paper we solve this problem by introducing spline approximations. The new approach can be used in the same way as the polynomial one but producing computable formulas for any degree of approximation in Fourier reconstruction. We present general error estimates and numerical experiments. | |
dc.description | 56 | |
dc.description | 4 | |
dc.description | 1489 | |
dc.description | 1501 | |
dc.language | en | |
dc.publisher | Ieee-inst Electrical Electronics Engineers Inc | |
dc.publisher | Piscataway | |
dc.publisher | EUA | |
dc.relation | Ieee Transactions On Signal Processing | |
dc.relation | IEEE Trans. Signal Process. | |
dc.rights | fechado | |
dc.rights | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dc.source | Web of Science | |
dc.subject | discrete Fourier transform | |
dc.subject | filters | |
dc.subject | Fourier series | |
dc.subject | Fourier transform | |
dc.subject | interpolation | |
dc.subject | Spectral Data | |
dc.subject | Polynomial Interpolation | |
dc.subject | Gibbs Phenomenon | |
dc.subject | Edges | |
dc.subject | Filters | |
dc.subject | Theorem | |
dc.title | Approximating functions from sampled Fourier data using spline pseudofilters | |
dc.type | Artículos de revistas | |