dc.creatorMartinez, AG
dc.creatorDe Pierro, AR
dc.date2008
dc.dateAPR
dc.date2014-07-30T13:49:25Z
dc.date2015-11-26T16:44:21Z
dc.date2014-07-30T13:49:25Z
dc.date2015-11-26T16:44:21Z
dc.date.accessioned2018-03-28T23:29:40Z
dc.date.available2018-03-28T23:29:40Z
dc.identifierIeee Transactions On Signal Processing. Ieee-inst Electrical Electronics Engineers Inc, v. 56, n. 4, n. 1489, n. 1501, 2008.
dc.identifier1053-587X
dc.identifierWOS:000254118300016
dc.identifier10.1109/TSP.2007.911290
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54822
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54822
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1273895
dc.descriptionRecently, new polynomial approximation formulas were proposed for the reconstruction of compactly supported piecewise smooth functions from Fourier data. Formulas for zero and first degree polynomials were presented. For higher degree approximations, polynomial formulas become extremely complicated to be handled. In this paper we solve this problem by introducing spline approximations. The new approach can be used in the same way as the polynomial one but producing computable formulas for any degree of approximation in Fourier reconstruction. We present general error estimates and numerical experiments.
dc.description56
dc.description4
dc.description1489
dc.description1501
dc.languageen
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.publisherPiscataway
dc.publisherEUA
dc.relationIeee Transactions On Signal Processing
dc.relationIEEE Trans. Signal Process.
dc.rightsfechado
dc.rightshttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dc.sourceWeb of Science
dc.subjectdiscrete Fourier transform
dc.subjectfilters
dc.subjectFourier series
dc.subjectFourier transform
dc.subjectinterpolation
dc.subjectSpectral Data
dc.subjectPolynomial Interpolation
dc.subjectGibbs Phenomenon
dc.subjectEdges
dc.subjectFilters
dc.subjectTheorem
dc.titleApproximating functions from sampled Fourier data using spline pseudofilters
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución