dc.creator | Montenegro, M | |
dc.creator | Montenegro, M | |
dc.date | 2000 | |
dc.date | MAY 15 | |
dc.date | 2014-12-02T16:30:22Z | |
dc.date | 2015-11-26T16:44:09Z | |
dc.date | 2014-12-02T16:30:22Z | |
dc.date | 2015-11-26T16:44:09Z | |
dc.date.accessioned | 2018-03-28T23:29:23Z | |
dc.date.available | 2018-03-28T23:29:23Z | |
dc.identifier | Journal Of Mathematical Analysis And Applications. Academic Press Inc Elsevier Science, v. 245, n. 2, n. 303, n. 316, 2000. | |
dc.identifier | 0022-247X | |
dc.identifier | WOS:000086999300001 | |
dc.identifier | 10.1006/jmaa.1999.6697 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/66288 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/66288 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/66288 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1273822 | |
dc.description | In this paper we study the problem -Delta(p)u = f(x, u, del u) in Omega u = 0 on partial derivative Omega, where Omega subset of R-N is a smooth bounded domain, N greater than or equal to 2, and Delta(p)u = div(\del u\(p-2) del u) defines the p-Laplacian. We provide some necessary and sufficient conditions on f under which the problem admits a weak solution. For the case p = 2 we obtain more general conditions on f. The main ingredients are degree theory and the super-subsolution method. (C) 2000 Academic Press. | |
dc.description | 245 | |
dc.description | 2 | |
dc.description | 303 | |
dc.description | 316 | |
dc.language | en | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.publisher | San Diego | |
dc.publisher | EUA | |
dc.relation | Journal Of Mathematical Analysis And Applications | |
dc.relation | J. Math. Anal. Appl. | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | elliptic | |
dc.subject | quasilinear | |
dc.subject | degenerate | |
dc.subject | p-Laplacian | |
dc.subject | critical growth in the gradient | |
dc.subject | existence and nonexistence of solution | |
dc.subject | Partial-differential Equations | |
dc.subject | Gradient | |
dc.subject | Growth | |
dc.title | Existence and nonexistence of solutions for quasilinear elliptic equations | |
dc.type | Artículos de revistas | |