dc.creatorMontenegro, M
dc.creatorMontenegro, M
dc.date2000
dc.dateMAY 15
dc.date2014-12-02T16:30:22Z
dc.date2015-11-26T16:44:09Z
dc.date2014-12-02T16:30:22Z
dc.date2015-11-26T16:44:09Z
dc.date.accessioned2018-03-28T23:29:23Z
dc.date.available2018-03-28T23:29:23Z
dc.identifierJournal Of Mathematical Analysis And Applications. Academic Press Inc Elsevier Science, v. 245, n. 2, n. 303, n. 316, 2000.
dc.identifier0022-247X
dc.identifierWOS:000086999300001
dc.identifier10.1006/jmaa.1999.6697
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/66288
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/66288
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/66288
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1273822
dc.descriptionIn this paper we study the problem -Delta(p)u = f(x, u, del u) in Omega u = 0 on partial derivative Omega, where Omega subset of R-N is a smooth bounded domain, N greater than or equal to 2, and Delta(p)u = div(\del u\(p-2) del u) defines the p-Laplacian. We provide some necessary and sufficient conditions on f under which the problem admits a weak solution. For the case p = 2 we obtain more general conditions on f. The main ingredients are degree theory and the super-subsolution method. (C) 2000 Academic Press.
dc.description245
dc.description2
dc.description303
dc.description316
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Mathematical Analysis And Applications
dc.relationJ. Math. Anal. Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectelliptic
dc.subjectquasilinear
dc.subjectdegenerate
dc.subjectp-Laplacian
dc.subjectcritical growth in the gradient
dc.subjectexistence and nonexistence of solution
dc.subjectPartial-differential Equations
dc.subjectGradient
dc.subjectGrowth
dc.titleExistence and nonexistence of solutions for quasilinear elliptic equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución