dc.creatorPereira, VS
dc.creatorDos Santos, JMC
dc.date2014
dc.dateAPR 1
dc.date2014-07-30T14:02:51Z
dc.date2015-11-26T16:42:37Z
dc.date2014-07-30T14:02:51Z
dc.date2015-11-26T16:42:37Z
dc.date.accessioned2018-03-28T23:27:15Z
dc.date.available2018-03-28T23:27:15Z
dc.identifierComputers & Structures. Pergamon-elsevier Science Ltd, v. 134, n. 48, n. 61, 2014.
dc.identifier0045-7949
dc.identifier1879-2243
dc.identifierWOS:000331676500004
dc.identifier10.1016/j.compstruc.2013.11.006
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57333
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57333
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1273320
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionAt mid- and high-frequency bands, displacement-based approaches such as the finite element method (FEM) create too large models, while energy-based methods, such as statistical energy analysis, produce smaller ones, but without spatial variation. Energy flow analysis (EFA) can produce compact models that include spatial variation; however, their analytical solution makes them difficult to handle for built-up structures. To overcome this issue, the energy finite element method (EFEM), a finite element solution of EFA, was proposed. A more accurate alternative to EFEM is the energy spectral element method (ESEM). It is a matrix methodology applied to EFA similar in style to FEM, with one significant difference being the use of the analytical solution as interpolation functions. Simulated results obtained by EFEM and ESEM are analysed and compared with each other and with the spectral element method, which is used as a reference. (C) 2013 Elsevier Ltd. All rights reserved.
dc.description134
dc.description48
dc.description61
dc.descriptionFundacao de Apoio a Pesquisa do Estado do Maranhao - FAPEMA
dc.descriptionFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationComputers & Structures
dc.relationComput. Struct.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectEnergy flow analysis
dc.subjectEnergy finite element method
dc.subjectEnergy spectral element method
dc.subjectSpectral element method
dc.subjectPlate
dc.subjectJoint
dc.subjectSpectral-element Method
dc.subjectFlow Models
dc.subjectPower-flow
dc.subjectBeams
dc.titleCoupled plate energy models at mid- and high-frequency vibrations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución