dc.creatorde Mendonca, LF
dc.creatorPerez, R
dc.creatorLopes, VLR
dc.date2003
dc.dateSEP 15
dc.date2014-11-17T09:59:53Z
dc.date2015-11-26T16:42:05Z
dc.date2014-11-17T09:59:53Z
dc.date2015-11-26T16:42:05Z
dc.date.accessioned2018-03-28T23:26:30Z
dc.date.available2018-03-28T23:26:30Z
dc.identifierJournal Of Computational And Applied Mathematics. Elsevier Science Bv, v. 158, n. 2, n. 317, n. 337, 2003.
dc.identifier0377-0427
dc.identifierWOS:000186137500005
dc.identifier10.1016/S0377-0427(03)00451-5
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/60596
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/60596
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/60596
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1273147
dc.descriptionIn this work new quasi-Newton methods for solving large-scale nonlinear systems of equations are presented. In these methods q ( > 1) columns of the approximation of the inverse Jacobian matrix are updated in such a way that the q last secant equations are satisfied (whenever possible) at every iteration. An optimal maximum value for q that makes the method competitive is strongly suggested. The best implementation from the point of view of linear algebra and numerical stability is proposed and a local convergence result for the case q=2 is proved. Several numerical comparative tests with other quasi-Newton methods are carried out. (C) 2003 Elsevier B.V. All rights reserved.
dc.description158
dc.description2
dc.description317
dc.description337
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationJournal Of Computational And Applied Mathematics
dc.relationJ. Comput. Appl. Math.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectinverse q-Columns Updating Method
dc.subjectnonlinear systems
dc.subjectquasi-Newton methods
dc.subjectOptimization Software
dc.titleInverse q-Columns Updating Methods for solving nonlinear systems of equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución