dc.creatorAnan'in, S
dc.creatorGrossi, CH
dc.date2011
dc.date2014-07-30T14:02:33Z
dc.date2015-11-26T16:41:36Z
dc.date2014-07-30T14:02:33Z
dc.date2015-11-26T16:41:36Z
dc.date.accessioned2018-03-28T23:25:51Z
dc.date.available2018-03-28T23:25:51Z
dc.identifierMoscow Mathematical Journal. Independent Univ Moscow, v. 11, n. 4, n. 633, n. 655, 2011.
dc.identifier1609-3321
dc.identifierWOS:000300368300001
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57187
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57187
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1272978
dc.descriptionThis paper is devoted to a coordinate-free approach to several classic geometries such as hyperbolic (real, complex, quaternionic), elliptic (spherical, Fubini-Study), and lorentzian (de Sitter, anti de Sitter) ones. These geometries carry a certain simple structure that is in some sense stronger than the riemannian structure. Their basic geometrical objects have linear nature and provide natural compactifications of classic spaces. The usual riemannian concepts are easily derivable from the strong structure and thus gain their coordinate-free form. Many examples illustrate fruitful features of the approach. The framework introduced here has already been shown to be adequate for solving problems concerning particular classic spaces.
dc.description11
dc.description4
dc.description633
dc.description655
dc.descriptionInstitut des Hautes Etudes Scientifiques (IHES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.descriptionMax-Planck-Gesellschaft
dc.descriptionFAPEMIG [00163/06]
dc.languageen
dc.publisherIndependent Univ Moscow
dc.publisherMoscow
dc.publisherFederação da Rússia
dc.relationMoscow Mathematical Journal
dc.relationMosc. Math. J.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectClassic geometries
dc.subjecthyperbolic geometry
dc.subjectFubini-Study metric
dc.subjectparallel transport
dc.subjectComplex Hyperbolic Space
dc.subjectOriented Lines
dc.subjectSubmanifolds
dc.subjectBisectors
dc.titleCOORDINATE-FREE CLASSIC GEOMETRIES
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución