dc.creatorSaleh, AM
dc.creatorClemente, RA
dc.date2004
dc.dateJUN
dc.date2014-11-17T07:12:13Z
dc.date2015-11-26T16:40:49Z
dc.date2014-11-17T07:12:13Z
dc.date2015-11-26T16:40:49Z
dc.date.accessioned2018-03-28T23:24:52Z
dc.date.available2018-03-28T23:24:52Z
dc.identifierJapanese Journal Of Applied Physics Part 1-regular Papers Short Notes & Review Papers. Inst Pure Applied Physics, v. 43, n. 6A, n. 3624, n. 3628, 2004.
dc.identifier0021-4922
dc.identifierWOS:000222503400076
dc.identifier10.1143/JJAP.43.3624
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53780
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/53780
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53780
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1272737
dc.descriptionA simple model for reproducing temperature recalescence behaviour in spherical undercooled liquid metallic samples, undergoing crystallization transformations, is presented. The model is applied to constant heat extraction rate, uniform but time dependent temperature distribution inside the sample (even after the start of crystallization), a classical temperature dependent rate of nucleation (including contributions from different specific heats for different phases and also a catalytic factor to model the possibility of heterogeneous distributed impurities) and the solidified grain interface velocity is taken proportional to the temperature undercooling. Different assumptions are considered for the sample transformed fraction as function of the extended volume of nuclei, like the classical Kolmogoroff, Johnson-Mehl, Avrami one (corresponding to random distribution of nuclei), the Austin-Rickett one (corresponding to some kind of clusterized distribution) and also an empirical one corresponding to some ordering in the distribution of nuclei. As an example of application, a published experimental temperature curve for a zirconium sample in the electromagnetic containerless facility TEMPUS, during the 2nd International Microgravity Laboratory Mission in 1994, is modeled. Some thermo-physical parameters of interest for Zr are discussed.
dc.description43
dc.description6A
dc.description3624
dc.description3628
dc.languageen
dc.publisherInst Pure Applied Physics
dc.publisherTokyo
dc.publisherJapão
dc.relationJapanese Journal Of Applied Physics Part 1-regular Papers Short Notes & Review Papers
dc.relationJpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectundercooling
dc.subjectrecalescence
dc.subjectsolidification
dc.subjectextended volume
dc.subjectZr thermo-physical parameters
dc.subjectFree-energy Change
dc.subjectHeat-transfer
dc.subjectRapid Solidification
dc.subjectLevitation
dc.subjectDroplets
dc.subjectCrystallization
dc.subjectTemperature
dc.subjectNucleation
dc.subjectKinetics
dc.subjectMelts
dc.titleA simple model for solidification of undercooled metallic samples
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución