dc.creatorRibeiro, JS
dc.creatorFerreira, MMC
dc.creatorSalva, TJG
dc.date2011
dc.dateFEB 15
dc.date2014-07-30T16:52:24Z
dc.date2015-11-26T16:40:03Z
dc.date2014-07-30T16:52:24Z
dc.date2015-11-26T16:40:03Z
dc.date.accessioned2018-03-28T23:23:50Z
dc.date.available2018-03-28T23:23:50Z
dc.identifierTalanta. Elsevier Science Bv, v. 83, n. 5, n. 1352, n. 1358, 2011.
dc.identifier0039-9140
dc.identifierWOS:000287110100006
dc.identifier10.1016/j.talanta.2010.11.001
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/63073
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/63073
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1272646
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionMathematical models based on chemometric analyses of the coffee beverage sensory data and NIR spectra of 51 Arabica roasted coffee samples were generated aiming to predict the scores of acidity, bitterness, flavour, cleanliness, body and overall quality of coffee beverage. Partial least squares (PIS) were used to construct the models. The ordered predictor selection COPS) algorithm was applied to select the wavelengths for the regression model of each sensory attribute in order to take only significant regions into account. The regions of the spectrum defined as important for sensory quality were closely related to the NIR spectra of pure caffeine, trigonelline,5-caffeoylquinic acid, cellulose, coffee lipids, sucrose and casein. The NIR analyses sustained that the relationship between the sensory characteristics of the beverage and the chemical composition of the roasted grain were as listed below: 1 - the lipids and proteins were closely related to the attribute body: 2 - the caffeine and chlorogenic acids were related to bitterness; 3 - the chlorogenic acids were related to acidity and flavour; 4 - the cleanliness and overall quality were related to caffeine, trigonelline, chlorogenic acid, polysaccharides, sucrose and protein. (C) 2010 Elsevier B.V. All rights reserved.
dc.description83
dc.description5
dc.description1352
dc.description1358
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationTalanta
dc.relationTalanta
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectChemometrics
dc.subjectNear infrared diffuse reflectance
dc.subjectPartial least squares
dc.subjectArabica coffee
dc.subjectSensory analysis
dc.subjectReflectance Spectroscopy
dc.subjectFeature-selection
dc.subjectRoasted Coffees
dc.subjectQuality
dc.subjectDifferentiation
dc.subjectFeasibility
dc.subjectPrediction
dc.subjectAttributes
dc.subjectColor
dc.titleChemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución