dc.creatorPerrechil, FA
dc.creatorSato, ACK
dc.creatorCunha, RL
dc.date2011
dc.dateMAY
dc.date2014-07-30T14:35:47Z
dc.date2015-11-26T16:39:56Z
dc.date2014-07-30T14:35:47Z
dc.date2015-11-26T16:39:56Z
dc.date.accessioned2018-03-28T23:23:41Z
dc.date.available2018-03-28T23:23:41Z
dc.identifierJournal Of Food Engineering. Elsevier Sci Ltd, v. 104, n. 1, n. 123, n. 133, 2011.
dc.identifier0260-8774
dc.identifierWOS:000287551400017
dc.identifier10.1016/j.jfoodeng.2010.12.004
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/60921
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/60921
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1272606
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe influence of atomization process to produce kappa-carrageenan and kappa-carrageenan/sodium caseinate microgels was studied experimentally (aspect ratio and particle size distribution) and theoretically (dimensionless parameters). Moreover, rheological behavior of microgel suspensions was evaluated to examine their potential application in food products. Experimental results demonstrated that the size of microgels was influenced by feed flow rate, compressed air flow rate and composition of solutions, while their shape depended on the viscosity and surface tension of biopolymer solutions. Regarding the dimensionless numbers, higher values of Reynolds number of liquid layer (Rex(lambda l)) and Weber number (We(l)) led to smaller particles, while the decrease of Ohnesorge number (Oh) was related to lower sphericity of microgels. Rheological behavior of suspensions depended on not only the morphology and size of microgels, but also their composition. Incompatibility between kappa-carrageenan and sodium caseinate in mixed microgels led to suspensions with more complex rheological behavior at determined biopolymer concentrations. (C) 2010 Elsevier Ltd. All rights reserved.
dc.description104
dc.description1
dc.description123
dc.description133
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAPESP [2007/58017-5]
dc.descriptionCNPq [301869/2006-5]
dc.languageen
dc.publisherElsevier Sci Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationJournal Of Food Engineering
dc.relationJ. Food Eng.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectExtrusion
dc.subjectIonic gelation
dc.subjectMicroscopy
dc.subjectRheology
dc.subjectSol-gel Transition
dc.subjectInternal Gelation
dc.subjectAlginate
dc.subjectParticles
dc.subjectSize
dc.subjectSuspensions
dc.subjectMicrospheres
dc.subjectTechnology
dc.subjectMixtures
dc.subjectMicelles
dc.titlekappa-Carrageenan-sodium caseinate microgel production by atomization: Critical analysis of the experimental procedure
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución