dc.creatorGalves, A
dc.creatorGarcia, NL
dc.creatorLocherbach, E
dc.creatorOrlandi, E
dc.date2013
dc.dateAUG
dc.date2014-07-30T14:35:47Z
dc.date2015-11-26T16:39:50Z
dc.date2014-07-30T14:35:47Z
dc.date2015-11-26T16:39:50Z
dc.date.accessioned2018-03-28T23:23:33Z
dc.date.available2018-03-28T23:23:33Z
dc.identifierAnnals Of Applied Probability. Inst Mathematical Statistics, v. 23, n. 4, n. 1629, n. 1659, 2013.
dc.identifier1050-5164
dc.identifierWOS:000321678200012
dc.identifier10.1214/12-AAP882
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/60917
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/60917
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1272574
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWe consider a particle system on Z(d) with real state space and interactions of infinite range. Assuming that the rate of change is continuous we obtain a Kalikow-type decomposition of the infinite range change rates as a mixture of finite range change rates. Furthermore, if a high noise condition holds, as an application of this decomposition, we design a feasible perfect simulation algorithm to sample from the stationary process. Finally, the perfect simulation scheme allows us to forge an algorithm to obtain an explicit construction of a coupling attaining Ornstein's (d) over bar -distance for two ordered Ising probability measures.
dc.description23
dc.description4
dc.description1629
dc.description1659
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description[ANR-08-BLAN-0220-01]
dc.description[Prin07: 20078XYHYS]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCNPq [305447/2008-4, 302755/2010-1]
dc.description[ANR-08-BLAN-0220-01]
dc.description[Prin07: 20078XYHYS]
dc.languageen
dc.publisherInst Mathematical Statistics
dc.publisherCleveland
dc.publisherEUA
dc.relationAnnals Of Applied Probability
dc.relationAnn. Appl. Probab.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectInteracting particle systems
dc.subjectinfinite range interactions
dc.subjectcontinuous spin systems
dc.subjectperfect simulation
dc.subjectrandom Markov chains
dc.subjectKalikow-type decomposition
dc.subjectPerfect Simulation
dc.subjectImage-restoration
dc.subjectMarkov-chains
dc.subjectRandom-fields
dc.subjectStatistical-mechanics
dc.subjectPoint-processes
dc.subjectLoss Networks
dc.subjectModels
dc.subjectErgodicity
dc.subjectExistence
dc.titleKALIKOW-TYPE DECOMPOSITION FOR MULTICOLOR INFINITE RANGE PARTICLE SYSTEMS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución