dc.creator | Galves, A | |
dc.creator | Garcia, NL | |
dc.creator | Locherbach, E | |
dc.creator | Orlandi, E | |
dc.date | 2013 | |
dc.date | AUG | |
dc.date | 2014-07-30T14:35:47Z | |
dc.date | 2015-11-26T16:39:50Z | |
dc.date | 2014-07-30T14:35:47Z | |
dc.date | 2015-11-26T16:39:50Z | |
dc.date.accessioned | 2018-03-28T23:23:33Z | |
dc.date.available | 2018-03-28T23:23:33Z | |
dc.identifier | Annals Of Applied Probability. Inst Mathematical Statistics, v. 23, n. 4, n. 1629, n. 1659, 2013. | |
dc.identifier | 1050-5164 | |
dc.identifier | WOS:000321678200012 | |
dc.identifier | 10.1214/12-AAP882 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/60917 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/60917 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1272574 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | We consider a particle system on Z(d) with real state space and interactions of infinite range. Assuming that the rate of change is continuous we obtain a Kalikow-type decomposition of the infinite range change rates as a mixture of finite range change rates. Furthermore, if a high noise condition holds, as an application of this decomposition, we design a feasible perfect simulation algorithm to sample from the stationary process. Finally, the perfect simulation scheme allows us to forge an algorithm to obtain an explicit construction of a coupling attaining Ornstein's (d) over bar -distance for two ordered Ising probability measures. | |
dc.description | 23 | |
dc.description | 4 | |
dc.description | 1629 | |
dc.description | 1659 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | [ANR-08-BLAN-0220-01] | |
dc.description | [Prin07: 20078XYHYS] | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | CNPq [305447/2008-4, 302755/2010-1] | |
dc.description | [ANR-08-BLAN-0220-01] | |
dc.description | [Prin07: 20078XYHYS] | |
dc.language | en | |
dc.publisher | Inst Mathematical Statistics | |
dc.publisher | Cleveland | |
dc.publisher | EUA | |
dc.relation | Annals Of Applied Probability | |
dc.relation | Ann. Appl. Probab. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.subject | Interacting particle systems | |
dc.subject | infinite range interactions | |
dc.subject | continuous spin systems | |
dc.subject | perfect simulation | |
dc.subject | random Markov chains | |
dc.subject | Kalikow-type decomposition | |
dc.subject | Perfect Simulation | |
dc.subject | Image-restoration | |
dc.subject | Markov-chains | |
dc.subject | Random-fields | |
dc.subject | Statistical-mechanics | |
dc.subject | Point-processes | |
dc.subject | Loss Networks | |
dc.subject | Models | |
dc.subject | Ergodicity | |
dc.subject | Existence | |
dc.title | KALIKOW-TYPE DECOMPOSITION FOR MULTICOLOR INFINITE RANGE PARTICLE SYSTEMS | |
dc.type | Artículos de revistas | |