Artículos de revistas
Embedding of a maximal curve in a Hermitian variety
Registro en:
Compositio Mathematica. Kluwer Academic Publ, v. 128, n. 1, n. 95, n. 113, 2001.
0010-437X
WOS:000170160800005
10.1023/A:1017553432375
Autor
Korchmaros, G
Torres, F
Institución
Resumen
Let X be a projective, geometrically irreducible, non-singular, algebraic curve defined over a finite field F-q of order q(2). If the number of F-q2-rational points of X satisfies the Hasse-Weil upper bound, then X is said to be F-q-maximal. For a point P-0 is an element of X(F-q2), let pi be the morphism arising from the linear series D: = \ (q + 1)P-0\, and let N: = dim( D). It is known that N greater than or equal to 2 and that pi is independent of P-0 whenever X is F-q2-maximal. 128 1 95 113