dc.creatorVieyro, FL
dc.creatorRomero, GE
dc.creatorPeres, OLG
dc.date2013
dc.dateOCT
dc.date2014-07-30T17:23:55Z
dc.date2015-11-26T16:37:55Z
dc.date2014-07-30T17:23:55Z
dc.date2015-11-26T16:37:55Z
dc.date.accessioned2018-03-28T23:21:07Z
dc.date.available2018-03-28T23:21:07Z
dc.identifierAstronomy & Astrophysics. Edp Sciences S A, v. 558, 2013.
dc.identifier0004-6361
dc.identifier1432-0746
dc.identifierWOS:000326574000142
dc.identifier10.1051/0004-6361/201321701
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/65328
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/65328
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1272152
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionContext. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims. If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods. We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results. The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions. The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (similar to 10 yr) of integration with the full 86-string configuration.
dc.description558
dc.descriptionANPCyT [BID 1728/OC -AR PICT-2012-00878]
dc.descriptionCONICET [PIP 0078/2010]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description[AYA 2010-21782-C03-01]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionANPCyT [BID 1728/OC -AR PICT-2012-00878]
dc.descriptionCONICET [PIP 0078/2010]
dc.descriptionFAPESP [2012/16389-1]
dc.description[AYA 2010-21782-C03-01]
dc.languageen
dc.publisherEdp Sciences S A
dc.publisherLes Ulis Cedex A
dc.publisherFrança
dc.relationAstronomy & Astrophysics
dc.relationAstron. Astrophys.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectneutrinos
dc.subjectgamma-ray burst: general
dc.subjectradiation mechanisms: non-thermal
dc.subjectGamma-ray Bursts
dc.subjectHigh-energy Neutrinos
dc.subjectPopulation Iii
dc.subjectMagnetic Acceleration
dc.subjectRelativistic Jets
dc.subjectStar-formation
dc.subjectSupernova
dc.subjectAfterglow
dc.subjectVariability
dc.subjectParameters
dc.titleNeutrinos from collapsars
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución