dc.creatorCampos, CN
dc.creatorde Mello, CP
dc.date2007
dc.date42064
dc.date2014-11-17T03:57:23Z
dc.date2015-11-26T16:37:33Z
dc.date2014-11-17T03:57:23Z
dc.date2015-11-26T16:37:33Z
dc.date.accessioned2018-03-28T23:20:41Z
dc.date.available2018-03-28T23:20:41Z
dc.identifierDiscrete Applied Mathematics. Elsevier Science Bv, v. 155, n. 5, n. 585, n. 597, 2007.
dc.identifier0166-218X
dc.identifierWOS:000245504100001
dc.identifier10.1016/j.dam.2006.08.010
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53694
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/53694
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53694
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1272052
dc.descriptionThe total chromatic number XT(G) is the least number of colours needed to colour the vertices and edges of a graph G such that no incident or adjacent elements (vertices or edges) receive the same colour. The Total Colouring Conjecture (TCC) states that for every simple graph G. chi T(G) <= Delta 1 (G) + 2. This work verifies the TCC for powers of cycles C-n(k), n even and 2 < k < n/2, showing that there exists and can be polynomially constructed a (Delta (G) + 2)-total colouring for these graphs. (c) 2006 Elsevier B.V. All rights reserved.
dc.description155
dc.description5
dc.description585
dc.description597
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationDiscrete Applied Mathematics
dc.relationDiscret Appl. Math.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjecttotal colourings
dc.subjecttotal colouring conjecture
dc.subjecttotal chromatic number
dc.subjectpowers of cycles
dc.subjectNp-hard
dc.subjectGraphs
dc.subjectNumber
dc.titleA result on the total colouring of powers of cycles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución