dc.creator | Chari, V | |
dc.creator | Moura, A | |
dc.creator | Young, C | |
dc.date | 2013 | |
dc.date | JUN | |
dc.date | 2014-07-30T18:08:17Z | |
dc.date | 2015-11-26T16:36:42Z | |
dc.date | 2014-07-30T18:08:17Z | |
dc.date | 2015-11-26T16:36:42Z | |
dc.date.accessioned | 2018-03-28T23:19:33Z | |
dc.date.available | 2018-03-28T23:19:33Z | |
dc.identifier | Mathematische Zeitschrift. Springer, v. 274, n. 41671, n. 613, n. 645, 2013. | |
dc.identifier | 0025-5874 | |
dc.identifier | WOS:000319004900033 | |
dc.identifier | 10.1007/s00209-012-1088-7 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/70293 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/70293 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1271888 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | We explore the relation between self extensions of simple representations of quantum affine algebras and the property of a simple representation being prime. We show that every nontrivial simple representation has a nontrivial self extension. Conversely, we prove that if a simple representation has a unique nontrivial self extension up to isomorphism, then its Drinfeld polynomial is a power of the Drinfeld polynomial of a prime representation. It turns out that, in the -case, a simple module is prime if and only if it has a unique nontrivial self extension up to isomorphism. It is tempting to conjecture that this is true in general and we present a large class of prime representations satisfying this homological property. | |
dc.description | 274 | |
dc.description | 41671 | |
dc.description | 613 | |
dc.description | 645 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | EPSRC [EP/H000054/1] | |
dc.description | [DMS-0901253] | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | CNPq [306678/2008-0] | |
dc.description | EPSRC [EP/H000054/1] | |
dc.description | [DMS-0901253] | |
dc.language | en | |
dc.publisher | Springer | |
dc.publisher | New York | |
dc.publisher | EUA | |
dc.relation | Mathematische Zeitschrift | |
dc.relation | Math. Z. | |
dc.rights | fechado | |
dc.rights | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dc.source | Web of Science | |
dc.subject | Quantum affine algebras | |
dc.subject | Extentions | |
dc.subject | Prime | |
dc.subject | Quantum Affine Algebras | |
dc.subject | Finite-dimensional Representations | |
dc.subject | Minimal Affinizations | |
dc.subject | Cluster Algebras | |
dc.subject | Quiver Varieties | |
dc.subject | Simple Modules | |
dc.subject | Crystal Bases | |
dc.subject | Weyl Modules | |
dc.subject | Products | |
dc.subject | Demazure | |
dc.title | Prime representations from a homological perspective | |
dc.type | Artículos de revistas | |