dc.creatorFazanaro, FI
dc.creatorSoriano, DC
dc.creatorSuyama, R
dc.creatorAttux, R
dc.creatorMadrid, MK
dc.creatorDe Oliveira, JR
dc.date2013
dc.dateJUN
dc.date2014-07-30T16:51:57Z
dc.date2015-11-26T16:36:15Z
dc.date2014-07-30T16:51:57Z
dc.date2015-11-26T16:36:15Z
dc.date.accessioned2018-03-28T23:18:55Z
dc.date.available2018-03-28T23:18:55Z
dc.identifierChaos. Amer Inst Physics, v. 23, n. 2, 2013.
dc.identifier1054-1500
dc.identifier1089-7682
dc.identifierWOS:000321146500005
dc.identifier10.1063/1.4802428
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/62860
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/62860
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271749
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThe present work aims to apply a recently proposed method for estimating Lyapunov exponents to characterize-with the aid of the metric entropy and the fractal dimension-the degree of information and the topological structure associated with multiscroll attractors. In particular, the employed methodology offers the possibility of obtaining the whole Lyapunov spectrum directly from the state equations without employing any linearization procedure or time series-based analysis. As a main result, the predictability and the complexity associated with the phase trajectory were quantified as the number of scrolls are progressively increased for a particular piecewise linear model. In general, it is shown here that the trajectory tends to increase its complexity and unpredictability following an exponential behaviour with the addition of scrolls towards to an upper bound limit, except for some degenerated situations where a non-uniform grid of scrolls is attained. Moreover, the approach employed here also provides an easy way for estimating the finite time Lyapunov exponents of the dynamics and, consequently, the Lagrangian coherent structures for the vector field. These structures are particularly important to understand the stretching/folding behaviour underlying the chaotic multiscroll structure and can provide a better insight of phase space partition and exploration as new scrolls are progressively added to the attractor. (C) 2013 AIP Publishing LLC
dc.description23
dc.description2
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFAPESP [2012/09624-4]
dc.languageen
dc.publisherAmer Inst Physics
dc.publisherMelville
dc.publisherEUA
dc.relationChaos
dc.relationChaos
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectCoupled Chua Circuits
dc.subjectN-double Scrolls
dc.subjectChaotic Attractors
dc.subject2-dimensional Turbulence
dc.subjectTime-series
dc.subjectSystems
dc.subjectGeneration
dc.subjectFlows
dc.titleCharacterization of multiscroll attractors using Lyapunov exponents and Lagrangian coherent structures
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución