dc.creatorPoppi, RJ
dc.creatorMassart, DL
dc.date1998
dc.date46692
dc.date2014-12-02T16:27:53Z
dc.date2015-11-26T16:35:32Z
dc.date2014-12-02T16:27:53Z
dc.date2015-11-26T16:35:32Z
dc.date.accessioned2018-03-28T23:18:02Z
dc.date.available2018-03-28T23:18:02Z
dc.identifierAnalytica Chimica Acta. Elsevier Science Bv, v. 375, n. 41671, n. 187, n. 195, 1998.
dc.identifier0003-2670
dc.identifierWOS:000076890200017
dc.identifier10.1016/S0003-2670(98)00462-0
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/72190
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/72190
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/72190
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271545
dc.descriptionThe optimal brain surgeon (OBS) pruning procedure for automatic selection of the optimal neural network architecture was applied in multivariate calibration studies of two different near infrared data sets. These spectroscopic data sets were first preprocessed by using principal component analysis (PCA), and the scores of these principal components were the input into the neural network. In the first (linear) data set, the optimized architecture converged to a linear model, and the results were similar to linear PCR and PLS. In the second (non-linear) data set, the pruning procedure improved the generalization ability, reducing the errors in a test set when compared to a non-pruned architecture, and produced better results than PCR and PLS. When using OBS in a network with both linear and non-linear transfer functions, a diagnostic for non-linearity results. In case of a linear model, the net is automatically reduced to principal component regression (PCR). (C) 1998 Elsevier Science B.V. All rights reserved.
dc.description375
dc.description41671
dc.description187
dc.description195
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationAnalytica Chimica Acta
dc.relationAnal. Chim. Acta
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectmultivariate calibration
dc.subjectneural networks
dc.subjectpruning
dc.subjectoptimal brain surgeon
dc.subjectRegression
dc.titleThe optimal brain surgeon for pruning neural network architecture applied to multivariate calibration
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución