dc.creatorDias, R
dc.date1998
dc.date2014-12-02T16:27:52Z
dc.date2015-11-26T16:35:30Z
dc.date2014-12-02T16:27:52Z
dc.date2015-11-26T16:35:30Z
dc.date.accessioned2018-03-28T23:17:59Z
dc.date.available2018-03-28T23:17:59Z
dc.identifierJournal Of Statistical Computation And Simulation. Gordon Breach Sci Publ Ltd, v. 60, n. 4, n. 277, n. 293, 1998.
dc.identifier0094-9655
dc.identifierWOS:000082361900001
dc.identifier10.1080/00949659808811893
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79455
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/79455
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/79455
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271532
dc.descriptionThe Hybrid Spline method (H-spline) is a method of density estimation which involves regression splines and smoothing splines methods. Using basis functions (B-splines), this method is much faster than Smoothing Spline Density Estimation approach (Gu, 1993). Simulations suggest that with more structured data (e.g., several modes) H-spline method estimates the modes as well as Logspline (Kooperberg and Stone, 1991). The H-spline algorithm is designed to compute a solution to the penalized likelihood problem. The smoothing parameter is updated jointly with the estimate via a cross-validation performance estimate, where the performance is measured by a proxy of the symmetrized Kullback-Leibler. The initial number of knots is determined automatically based on an estimate of the number of modes and the symmetry of the underlying density. The algorithm increases the number of knots by 1 until the symmetrized Kullback-Leibler distance, based on two consecutives estimates satisfies a condition which was determined empirically.
dc.description60
dc.description4
dc.description277
dc.description293
dc.languageen
dc.publisherGordon Breach Sci Publ Ltd
dc.publisherReading
dc.publisherInglaterra
dc.relationJournal Of Statistical Computation And Simulation
dc.relationJ. Stat. Comput. Simul.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectdensity estimation
dc.subjectpenalized loglikelihood
dc.subjectB-splines
dc.subjectlogspline
dc.subjectsmoothing parameter
dc.subjectKullback-Leibler distance
dc.subjectKernel
dc.titleDensity estimation via hybrid splines
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución