Artículos de revistas
A comparison between k-Optimum Path Forest and k-Nearest Neighbors supervised classifiers
Registro en:
Pattern Recognition Letters. Elsevier Science Bv, v. 39, n. 2, n. 10, 2014.
0167-8655
1872-7344
WOS:000331854700002
10.1016/j.patrec.2013.08.030
Autor
Souza, R
Rittner, L
Lotufo, R
Institución
Resumen
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) This paper presents the k-Optimum Path Forest (k-OPF) supervised classifier, which is a natural extension of the OPF classifier. k-OPF is compared to the k-Nearest Neighbors (k-NN), Support Vector Machine (SVM) and Decision Tree (DT) classifiers, and we see that k-OPF and k-NN have many similarities. This work shows that the k-OPF is equivalent to the k-NN classifier when all training samples are used as prototypes. Simulations comparing the accuracy results, the decision boundaries and the processing time of the classifiers are presented to experimentally validate our hypothesis. Also, we prove that OPF using the max cost function and the NN supervised classifiers have the same theoretical error bounds. (C) 2013 Elsevier B.V. All rights reserved. 39 SI 2 10 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)