dc.creatorCohen, N
dc.creatorNegreiros, CJC
dc.creatorSan Martin, LAB
dc.date2002
dc.dateAPR
dc.date2014-11-17T02:14:04Z
dc.date2015-11-26T16:35:20Z
dc.date2014-11-17T02:14:04Z
dc.date2015-11-26T16:35:20Z
dc.date.accessioned2018-03-28T23:17:47Z
dc.date.available2018-03-28T23:17:47Z
dc.identifierBulletin Brazilian Mathematical Society. Springer-verlag, v. 33, n. 1, n. 49, n. 73, 2002.
dc.identifier0100-3569
dc.identifierWOS:000179764900003
dc.identifier10.1007/s005740200002
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53667
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/53667
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53667
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271480
dc.descriptionThis paper considers invariant (1, 2)-symplectic almost Hermitian structures on the maximal flag manifod associated to a complex semi-simple Lie group G. The concept of cone-free invariant almost complex structure is introduced. It involves the rank-three subgroups of G, and generalizes the cone-free property for tournaments related to Sl (n, C) case. It is proved that the cone-free property is necessary for an invariant almost-complex structure to take part in an invariant (1, 2)-symplectic almost Hermitian structure. It is also sufficient if the Lie group is not B-1, 1 greater than or equal to 3, G(2) or F-4. For B-1 and F-4 a close condition turns out to be sufficient.
dc.description33
dc.description1
dc.description49
dc.description73
dc.languageen
dc.publisherSpringer-verlag
dc.publisherNew York
dc.publisherEUA
dc.relationBulletin Brazilian Mathematical Society
dc.relationBull. Braz. Math. Soc.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectsemi-simple Lie groups
dc.subjectflag manifolds
dc.subjectaffine Weyl groups
dc.subjectHermitian geometry
dc.titleA rank-three condition for invariant (1,2)-symplectic almost Hermitian structures on flag manifolds
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución