dc.creatorde Castro, CGG
dc.creatorCristiani, GD
dc.creatorSimoes, PJA
dc.creatorMandrini, CH
dc.creatorCorreia, E
dc.creatorKaufmann, P
dc.date2013
dc.dateJUN
dc.date2014-07-30T13:39:09Z
dc.date2015-11-26T16:34:51Z
dc.date2014-07-30T13:39:09Z
dc.date2015-11-26T16:34:51Z
dc.date.accessioned2018-03-28T23:17:10Z
dc.date.available2018-03-28T23:17:10Z
dc.identifierSolar Physics. Springer, v. 284, n. 2, n. 541, n. 558, 2013.
dc.identifier0038-0938
dc.identifierWOS:000318517800017
dc.identifier10.1007/s11207-012-0173-8
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52807
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/52807
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271323
dc.descriptionWe study a solar flare that occurred on 10 September 2002, in active region NOAA 10105, starting around 14:52 UT and lasting approximately 5 minutes in the radio range. The event was classified as M2.9 in X-rays and 1N in H alpha. Solar Submillimeter Telescope observations, in addition to microwave data, give a good spectral coverage between 1.415 and 212 GHz. We combine these data with ultraviolet images, hard and soft X-ray observations, and full-disk magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic Imager data are used to identify the locations of X-ray sources at different energies, and to determine the X-ray spectrum, while ultraviolet images allow us to characterize the coronal flaring region. The magnetic field evolution of the active region is analyzed using Michelson Doppler Imager magnetograms. The burst is detected at all available radio frequencies. X-ray images (between 12 keV and 300 keV) reveal two compact sources. In the 212 GHz data, which are used to estimate the radio-source position, a single compact source is seen, displaced by 25aEuro(3) from one of the hard X-ray footpoints. We model the radio spectra using two homogeneous sources, and we combine this analysis with that of hard X-rays to understand the dynamics of the accelerated particles. Relativistic particles, observed at radio wavelengths above 50 GHz, have an electron index evolving with the typical soft-hard-soft behavior.
dc.description284
dc.description2
dc.description541
dc.description558
dc.descriptionCONICET [UBACyT 20020100100733, PIP 2009-100766]
dc.descriptionANPCyT [PICT 2007-1790]
dc.descriptionEuropean Commission [HESPE FP7-2010-SPACE-1-263086]
dc.descriptionCONICET [UBACyT 20020100100733, PIP 2009-100766]
dc.descriptionANPCyT [PICT 2007-1790]
dc.descriptionEuropean Commission [HESPE FP7-2010-SPACE-1-263086]
dc.languageen
dc.publisherSpringer
dc.publisherDordrecht
dc.publisherHolanda
dc.relationSolar Physics
dc.relationSol. Phys.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectRadio bursts, association with flares
dc.subjectRadio bursts, microwave
dc.subjectX-ray bursts, association with flares
dc.subjectFlares, relation to magnetic field
dc.subjectChromosphere, active
dc.subjectX-ray Observations
dc.subjectSolar-flares
dc.subjectGamma-ray
dc.subjectSubmillimeter
dc.subjectEmission
dc.subjectComponent
dc.subjectElectrons
dc.subjectRhessi
dc.subjectImager
dc.subjectRange
dc.titleA Burst with Double Radio Spectrum Observed up to 212 GHz
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución