dc.creatorEngler, AJ
dc.date2004
dc.dateAPR 15
dc.date2014-11-17T03:41:32Z
dc.date2015-11-26T16:34:26Z
dc.date2014-11-17T03:41:32Z
dc.date2015-11-26T16:34:26Z
dc.date.accessioned2018-03-28T23:16:40Z
dc.date.available2018-03-28T23:16:40Z
dc.identifierJournal Of Algebra. Academic Press Inc Elsevier Science, v. 274, n. 2, n. 511, n. 522, 2004.
dc.identifier0021-8693
dc.identifierWOS:000220527200004
dc.identifier10.1016/j.jalgebra.2003.12.014
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53684
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/53684
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53684
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271195
dc.descriptionIn this note we study a modified version of the "Elementary Type Conjecture" for pro-p Galois groups. To be precise, let G(p) (F) be the Galois group of the maximal Galois p-extension of a field F containing a primitive pth root of unity. Under some natural assumptions concerning valuation rings of F (and also orderings of F when p = 2), we prove that Gp(F) can be obtained from suitable closed subgroups using a finite number of free pro-p products and semidirect products. (C) 2004 Published by Elsevier Inc.
dc.description274
dc.description2
dc.description511
dc.description522
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Algebra
dc.relationJ. Algebra
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectvaluation
dc.subjectordering
dc.subjectpro-p group
dc.subjectfree pro-p product
dc.subjectWitt Rings
dc.subjectFields
dc.titleA recursive description of pro-p Galois groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución