dc.creatorLopes, MC
dc.creatorLopes, HJN
dc.creatorTadmor, E
dc.date2000
dc.dateMAY-JUN
dc.date2014-12-02T16:27:29Z
dc.date2015-11-26T16:34:12Z
dc.date2014-12-02T16:27:29Z
dc.date2015-11-26T16:34:12Z
dc.date.accessioned2018-03-28T23:16:23Z
dc.date.available2018-03-28T23:16:23Z
dc.identifierAnnales De L Institut Henri Poincare-analyse Non Lineaire. Gauthier-villars/editions Elsevier, v. 17, n. 3, n. 371, n. 412, 2000.
dc.identifier0294-1449
dc.identifierWOS:000087979200003
dc.identifier10.1016/S0294-1449(00)00113-X
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54821
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/54821
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54821
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271127
dc.descriptionWe present a sharp local condition for the lack of concentrations in (and hence the L-2 convergence of) sequences of approximate solutions to the incompressible Euler equations. We apply this characterization to greatly simplify known existence results for 2D flows in the full plane (with special emphasis on rearrangement invariant regularity spaces), and obtain new existence results of solutions without energy concentrations in any number of spatial dimensions. Our results identify the 'critical' regularity which prevents concentrations, regularity which is quantified in terms of Lebesgue, Lorentz, Orlicz and Morrey spaces. Thus, for example, the strong convergence criterion cast in terms of circulation logarithmic decay rates due to DiPerna and Majda is simplified (removing the weak control of the vorticity at infinity) and extended (to any number of space dimensions). Our approach relies on using a generalized div-curl lemma (interesting for its own sake) to replace the role that elliptic regularity theory has played previously in this problem. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
dc.description17
dc.description3
dc.description371
dc.description412
dc.languageen
dc.publisherGauthier-villars/editions Elsevier
dc.publisherParis
dc.publisherFrança
dc.relationAnnales De L Institut Henri Poincare-analyse Non Lineaire
dc.relationAnn. Inst. Henri Poincare-Anal. Non Lineaire
dc.rightsaberto
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectNavier-stokes Equations
dc.subjectWeak Solutions
dc.subjectInviscid Flow
dc.subjectInitial Vorticity
dc.subjectSpaces
dc.subjectConvergence
dc.subjectRegularity
dc.subjectFluid
dc.titleApproximate solutions of the incompressible Euler equations with no concentrations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución