dc.creatorde Paiva, FO
dc.creatorMontenegro, M
dc.date2012
dc.dateOCT
dc.date2014-07-30T13:48:30Z
dc.date2015-11-26T16:34:03Z
dc.date2014-07-30T13:48:30Z
dc.date2015-11-26T16:34:03Z
dc.date.accessioned2018-03-28T23:16:11Z
dc.date.available2018-03-28T23:16:11Z
dc.identifierProceedings Of The Edinburgh Mathematical Society. Cambridge Univ Press, v. 55, n. 771, n. 780, 2012.
dc.identifier0013-0915
dc.identifierWOS:000308715700012
dc.identifier10.1017/S0013091512000041
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54297
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54297
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271077
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionWe study the problem -Delta(p)u - f(x, u) + t in Omega with Neumann boundary condition vertical bar del u|(p-2)(partial derivative u/partial derivative nu) = 0 on partial derivative Omega. There exists a t(0) is an element of R such that for t > t(0) there is no solution. If t <= t(0), there is at least a minimal solution, and for t < t(0) there are at least two distinct solutions. We use the sub-supersolution method, a priori estimates and degree theory.
dc.descriptiono TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.
dc.description55
dc.description3
dc.description771
dc.description780
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherCambridge Univ Press
dc.publisherNew York
dc.publisherEUA
dc.relationProceedings Of The Edinburgh Mathematical Society
dc.relationProc. Edinb. Math. Soc.
dc.rightsembargo
dc.rightshttp://journals.cambridge.org/action/displaySpecialPage?pageId=4676
dc.sourceWeb of Science
dc.subjecta priori estimates
dc.subjectdegree theory
dc.subjectsub-supersolutions
dc.subjectDirichlet Problem
dc.titleAN AMBROSETTI-PRODI-TYPE RESULT FOR A QUASILINEAR NEUMANN PROBLEM
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución