dc.creator | de Paiva, FO | |
dc.creator | Montenegro, M | |
dc.date | 2012 | |
dc.date | OCT | |
dc.date | 2014-07-30T13:48:30Z | |
dc.date | 2015-11-26T16:34:03Z | |
dc.date | 2014-07-30T13:48:30Z | |
dc.date | 2015-11-26T16:34:03Z | |
dc.date.accessioned | 2018-03-28T23:16:11Z | |
dc.date.available | 2018-03-28T23:16:11Z | |
dc.identifier | Proceedings Of The Edinburgh Mathematical Society. Cambridge Univ Press, v. 55, n. 771, n. 780, 2012. | |
dc.identifier | 0013-0915 | |
dc.identifier | WOS:000308715700012 | |
dc.identifier | 10.1017/S0013091512000041 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54297 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/54297 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1271077 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | We study the problem -Delta(p)u - f(x, u) + t in Omega with Neumann boundary condition vertical bar del u|(p-2)(partial derivative u/partial derivative nu) = 0 on partial derivative Omega. There exists a t(0) is an element of R such that for t > t(0) there is no solution. If t <= t(0), there is at least a minimal solution, and for t < t(0) there are at least two distinct solutions. We use the sub-supersolution method, a priori estimates and degree theory. | |
dc.description | o TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015. | |
dc.description | 55 | |
dc.description | 3 | |
dc.description | 771 | |
dc.description | 780 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.language | en | |
dc.publisher | Cambridge Univ Press | |
dc.publisher | New York | |
dc.publisher | EUA | |
dc.relation | Proceedings Of The Edinburgh Mathematical Society | |
dc.relation | Proc. Edinb. Math. Soc. | |
dc.rights | embargo | |
dc.rights | http://journals.cambridge.org/action/displaySpecialPage?pageId=4676 | |
dc.source | Web of Science | |
dc.subject | a priori estimates | |
dc.subject | degree theory | |
dc.subject | sub-supersolutions | |
dc.subject | Dirichlet Problem | |
dc.title | AN AMBROSETTI-PRODI-TYPE RESULT FOR A QUASILINEAR NEUMANN PROBLEM | |
dc.type | Artículos de revistas | |