Brasil | Artículos de revistas
dc.creatorLeite, EP
dc.creatorVidal, AC
dc.date2011
dc.dateAUG
dc.date2014-07-30T13:38:52Z
dc.date2015-11-26T16:33:57Z
dc.date2014-07-30T13:38:52Z
dc.date2015-11-26T16:33:57Z
dc.date.accessioned2018-03-28T23:16:03Z
dc.date.available2018-03-28T23:16:03Z
dc.identifierComputers & Geosciences. Pergamon-elsevier Science Ltd, v. 37, n. 8, n. 1174, n. 1180, 2011.
dc.identifier0098-3004
dc.identifierWOS:000294507900020
dc.identifier10.1016/j.cageo.2010.08.001
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52618
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/52618
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1271043
dc.descriptionIn this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density and sonic well log data as constraints. In this methodology, a 3D acoustic impedance model is calculated from seismic reflection amplitudes by applying an L(1)-norm sparse-spike inversion algorithm in the time domain, followed by a recursive inversion performed in the frequency domain. A 3D low-frequency impedance model is estimated by kriging interpolation of impedance values calculated from well log data. This low-frequency model is added to the inversion result which otherwise provides only a relative numerical scale. To convert acoustic impedance into a single reservoir property, a feed-forward Neural Network (NN) is trained, validated and tested using gamma-ray and acoustic impedance values observed at the well log positions as input and effective porosity values as target. The trained NN is then applied for the whole reservoir volume in order to obtain a 3D effective porosity model. While the particular conclusions drawn from the results obtained in this work cannot be generalized, such results suggest that this workflow can be applied successfully as an aid in reservoir characterization, especially when there is a strong non-linear relationship between effective porosity and acoustic impedance. (C) 2011 Elsevier Ltd. All rights reserved.
dc.description37
dc.description8
dc.description1174
dc.description1180
dc.descriptionPetrobras - Petroleo Brasileiro SA
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationComputers & Geosciences
dc.relationComput. Geosci.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectReservoir characterization
dc.subjectSeismic inversion
dc.subjectFeed-forward neural network
dc.subjectMatlab
dc.title3D porosity prediction from seismic inversion and neural networks
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución