dc.creatorThomson, BJ
dc.creatorBridges, NT
dc.creatorMilliken, R
dc.creatorBaldridge, A
dc.creatorHook, SJ
dc.creatorCrowley, JK
dc.creatorMarion, GM
dc.creatorde Souza, CR
dc.creatorBrown, AJ
dc.creatorWeitz, CM
dc.date2011
dc.dateAUG
dc.date2014-07-30T14:02:00Z
dc.date2015-11-26T16:32:45Z
dc.date2014-07-30T14:02:00Z
dc.date2015-11-26T16:32:45Z
dc.date.accessioned2018-03-28T23:14:16Z
dc.date.available2018-03-28T23:14:16Z
dc.identifierIcarus. Academic Press Inc Elsevier Science, v. 214, n. 2, n. 413, n. 432, 2011.
dc.identifier0019-1035
dc.identifier1090-2643
dc.identifierWOS:000294197500006
dc.identifier10.1016/j.icarus.2011.05.002
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/56863
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/56863
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1270618
dc.descriptionGale Crater contains a 5.2 km-high central mound of layered material that is largely sedimentary in origin and has been considered as a potential landing site for both the MER (Mars Exploration Rover) and MSL (Mars Science Laboratory) missions. We have analyzed recent data from Mars Reconnaissance Orbiter to help unravel the complex geologic history evidenced by these layered deposits and other landforms in the crater. Results from imaging data from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) confirm geomorphic evidence for fluvial activity and may indicate an early lacustrine phase. Analysis of spectral data from the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument shows clay-bearing units interstratified with sulfate-bearing strata in the lower member of the layered mound, again indicative of aqueous activity. The formation age of the layered mound, derived from crater counts and superposition relationships, is similar to 3.6-3.8 Ga and straddles the Noachian-Hesperian time-stratigraphic boundary. Thus Gale provides a unique opportunity to investigate global environmental change on Mars during a period of transition from an environment that favored phyllosilicate deposition to a later one that was dominated by sulfate formation. (C) 2011 Elsevier Inc. All rights reserved.
dc.description214
dc.description2
dc.description413
dc.description432
dc.descriptionNASA
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationIcarus
dc.relationIcarus
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectMars, Surface
dc.subjectGeological processes
dc.subjectCratering
dc.subjectInfrared observations
dc.subjectMedusae Fossae Formation
dc.subjectMartian Geologic Record
dc.subjectLaser Altimeter Data
dc.subjectArt. No. 5111
dc.subjectMeridiani-planum
dc.subjectPaleomagnetic Poles
dc.subjectPolar Wander
dc.subjectDeposits
dc.subjectStratigraphy
dc.subjectRegion
dc.titleConstraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución